
The RECLAIM architecture specification (M9)

1

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N°869884

AUTHORS: THANASIS VAFEIADIS, NIKOLAOS KOLOKAS,
ANGELIKI ZACHARAKI, KONSTANTINOS GEORGIADIS

DATE: 27.07.2020

The RECLAIM
architecture

specification –
Period 1

July 2020 – M10

The RECLAIM architecture specification (M10)

2

Technical References

1 PU = Public

 PP = Restricted to other programme participants (including the Commission Services)

 RE = Restricted to a group specified by the consortium (including the Commission Services)

 CO = Confidential, only for members of the consortium (including the Commission Services)

Project Acronym RECLAIM

Project Title RE-manufaCturing and Refurbishment LArge Industrial equipMent

Project Coordinator HARMS & WENDE GMBH & CO KG

Project Duration 01/10/2019 – 31/03/2023

Deliverable No. 2.3

Dissemination level 1 PU

Work Package 2

Task 2.3

Lead beneficiary CERTH

Contributing

beneficiary(ies)
HWH, LINKS, SUPSI, FEUP, TECNALIA, ADV, FINT, FCY, SCM, ICE

Due date of

deliverable
31/07/2020

Actual submission

date
-

The RECLAIM architecture specification (M10)

3

Document history

V Date Beneficiary Author

1 21/01/20 CERTH Thanasis Vafeiadis, Angeliki Zacharaki

2 04/06/20 CERTH Nikolaos Kolokas

3 15/07/20 CERTH Nikolaos Kolokas, Konstantinos Georgiadis

4 27/07/20 CERTH Nikolaos Kolokas

The RECLAIM architecture specification (M10)

4

Acronyms

Acronym Explanation

2D two-dimensional

3D three-dimensional

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

AC Alternative Current

AD Architectural Description

AES Advanced Encryption Standard

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programmer Interface

AR Augmented Reality

ARM Advanced RISC Machine

ASN Adaptive Sensorial Network

CBS Cost Breakdown Structure

CD Continuous Deployment

CI Continuous Integration

CIM Common Information Model

CMOS Complementary metal–oxide–semiconductor

The RECLAIM architecture specification (M10)

5

CSV Comma-separated values

CUDA Compute Unified Device Architecture

D Deliverable

DB [db] Database

DDD libraries for the digital twin development and process plant

simulation of complex environments (provided by TTS)

DRy Distributed data storage and analytics

DSF Decision Support Framework

ETL extract/transform/load

EU European Union

FPGA Field Programmable Gate Array

FWM Friction Welding Machine

GPU Graphics processing unit

GSM Global System for Mobile Communications

GUI Graphical User Interface

GW Gateway

HMD Head-mounted display

HMI Human-machine interface

HW Hardware

I(/)O Input/Output

The RECLAIM architecture specification (M10)

6

ID Identity

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IMU Inertial Measurement Unit

IoT Internet of Things

IP Internet Protocol

ISO International Organization for Standardization

IT Information Technology

JPA Java Persistence API

JSON JavaScript Object Notation

KPI Key Performance Indicator

LCA Life Cycle Assessment

LCC Life Cycle Cost

LoRa Long Range

LoRaWAN Long Range Wide Area Network

M Month

ML Machine learning

MQTT Message Queuing Telemetry Transport

MRL Mean Residual Life

MTBF Mean Time Between Failures

The RECLAIM architecture specification (M10)

7

(M)TTF (Mean) Time To Failure

MTTR Mean Time To Repair

NoSQL non-SQL

OGC Open Geospatial Consortium

OPC-UA Open Platform Communications Unified Architecture

OS Operating system

PC Personal Computer

PHM Prognostic & Health Management

QC quality check

R&D Research & Development

RAM Random Access Memory

REST Representational state transfer

RGB-D red-green-blue-depth

RISC Reduced instruction set computer

RUL Remaining Useful Life

S(/)W Software

SCM1 Source Code Management

SOAP Simple Object Access Protocol

SQL Structured Query Language

1 This is also the abbreviation of the RECLAIM beneficiary “SCM Group”.

The RECLAIM architecture specification (M10)

8

T Task

TBA To Be Announced

TCP Transmission Control Protocol

TTL Transistor-transistor logic

TXT filename extension for text files

UC Use Case

UCD user-centred design

UDP User Datagram Protocol

UI User Interface

UML Unified Modelling Language

URI Uniform Resource Identifier

USB Universal Serial Bus

WIP Work In Process

WP Work Package

WSN Wireless sensor network

XLSX filename extension for Excel files

XML eXtensible Markup Language

The RECLAIM architecture specification (M10)

9

Summary

This deliverable mainly describes the architecture of the RECLAIM platform. It also
presents the approach and methodology that have been followed by T2.3 to define
this architecture. There will be two revisions of this deliverable in M20 (5/2021)
and M30 (3/2022), including also stakeholders that may be relevant to this project
and the platform.

The RECLAIM architecture specification (M10)

10

Disclaimer

Any dissemination of results must indicate that it reflects only the author's view
and that the Agency and the European Commission are not responsible for any use
that may be made of the information it contains.

The RECLAIM architecture specification (M10)

11

Table of Contents

TECHNICAL REFERENCES 2

DOCUMENT HISTORY 3

ACRONYMS 4

SUMMARY 9

DISCLAIMER 10

TABLE OF CONTENTS 11

1. INTRODUCTION 12

1.1 PURPOSE, CONTEXT AND SCOPE 12

1.2 BACKGROUND 13

1.3 RELATION TO OTHER TASKS AND DELIVERABLES 14

1.4 CONTENT AND STRUCTURE OF THIS DELIVERABLE 14

1.5 TERMINOLOGY 15

2. ARCHITECTURAL DESIGN METHODOLOGY 16

2.1 FIRST ITERATION 18

3. ARCHITECTURAL VIEWS 22

3.1 FUNCTIONAL AND INFORMATION VIEW 22

3.1.1 System requirement description (Volere-based) 23

3.1.2 System requirements workflow 25

3.1.3 Overview of system requirements 27

3.1.4 Software components gathering - overview 28

3.1.5 Hardware specifications gathering - overview 29

3.1.6 Overall functional architecture 31

3.1.7 Information view 31

3.1.8 Software component details and diagrams 32

3.1.9 Common information model 82

3.2 DEPLOYMENT VIEW 85

3.3 DEVELOPMENT VIEW 88

3.3.1 Code organization 88

3.3.2 Continuous Integration and Deployment 89

3.3.3 Tools 89

4. CONCLUSIONS 90

REFERENCES 91

The RECLAIM architecture specification (M10)

12

ANNEX 1: SYSTEM REQUIREMENTS LIST 91

ANNEX 2: HARDWARE COMPONENTS LIST 128

A2.1 MACHINE VISION SYSTEM 128

A2.2 IOT GATEWAY WITH AI ACCELERATION 129

A2.3 LINKS FPGA PLATFORM 131

A2.4 FPGA-ACCELERATED CYBER SECURITY DEVICE 132

A2.5 FRICTION WELDING MACHINE 133

ANNEX 3: INDIVIDUAL DATA MODELS 134

A3.1 DATA FROM/TO THE ADAPTIVE SENSORIAL NETWORK 135

A3.1.1 ASN Sensor 135

A3.1.2 ASN Actuator 136

A3.1.3 Machine Vision System 138

A3.2 DATA FROM THE RELIABILITY ANALYSIS TOOL 140

A3.3 DATA FROM THE MACHINERY OPERATIONAL PROFILING 141

A3.4 DATA FROM THE OPTIMIZATION TOOLKIT FOR REFURBISHMENT AND

REMANUFACTURING PLANNING 143

A3.5 DATA FROM THE PROGNOSTIC AND HEALTH MANAGEMENT TOOLKIT 145

A3.5.1 Description of machine part 145

A3.5.2 Description of machine component 147

A3.5.3 Sensor/process data 149

A3.5.4 Load data 150

A3.5.5 Degradation data 150

A3.6 DATA FROM THE INTEGRATED DECISION SUPPORT FRAMEWORK FOR REFURBISHMENT

& REMANUFACTURING OPTIMIZATION CORE COMPONENT 153

1. Introduction

This section describes the purpose, background and structure of this deliverable,
the related terminology, as well as its relation with other tasks and deliverables.

1.1 Purpose, context and scope

In this deliverable the architecture for the RECLAIM platform is defined, based on
the technologies brought to the project and the user needs. Detailed descriptions
of the architectural elements, e.g. the cybersecurity framework, the Decision
Support Framework or RECLAIM Repository, will be available as separate
deliverables as outlined in the project specification. For implementation details
and specifications, the reader should refer to these. This deliverable will focus on
the fundamental concepts and properties of the RECLAIM system. The architectural
description includes aspects pertinent to the identification of the major system

The RECLAIM architecture specification (M10)

13

components, their appropriate interactions and definitions of their external
interfaces.

Various key functional requirements and architectural constraints had been defined
in the project specification before the beginning of the project. The architecture
was defined while gathering and validating requirements and definition of pilot
scenarios and use cases. Also, within the architecture task (T2.3), the detailed
system requirements were defined.

WP2 concerns Requirements Engineering and the Reference Architecture and deals
with the multiple phases of an evolutionary requirements engineering process, that
will include engineering and refinement of user, operational and system
requirements, specification and refinement of architecture design, as well as
model development and descriptions. An iterative approach is followed, i.e. the
contents of this deliverable are continuously updated during the project.

1.2 Background

The vision of RECLAIM is to demonstrate technologies and strategies in support of a
new paradigm for the management of large industrial equipment that approaches
the end of its designed life. This paradigm will substantially reduce the opportunity
cost of retain strategies (both money-wise and resource-wise) by allowing relatively
old equipment that faces the prospect of decommissioning to reclaim its
functionalities and role in the overall production system. Such new strategies will
contribute to a more sustainable and resource-friendly asset management and, at
the same time, offer economic and competitive advantages to the manufacturing
sector. To achieve the above, a Decision Support Framework (DSF) will be
developed to accumulate knowledge of the health status of machinery and propose
innovative methods, tools or services for the appropriate lifetime extension
strategy:

 Refurbishment and Upgrade of industrial equipment to improve machinery

operation and avoid unplanned downtime due to machine failure.

 Re-manufacturing and Re-use of industrial equipment to estimate Lifecycle

cost and contribute to the re-use of old machinery assets in renewed and

new factories.

 In-situ Repair to minimise the extra cost and downtime associated with the

disassembly and transportation of the machinery.

 Predictive Maintenance and Fault Diagnosis to maximize the performance of

machinery during its lifetime and provide pragmatic maintenance able to

identify equipment failures before they occur.

The RECLAIM Solution with its planned activities addresses currently neglected
industrial needs and contributes to unleashing the full potential of sustainable,

The RECLAIM architecture specification (M10)

14

green, and smart factories, by empowering the industry to produce components
and assembly systems that meet fast changing requirements. RECLAIM focuses on
100% re-use of equipment through flexible and low-cost systems that support the
fast and easy process of refurbishment and re-manufacturing. This perspective will
develop self-aware and knowledge-based equipment for the collection and
management of operation-related information. All the above-mentioned solutions
will be demonstrated in real industrial environments to evaluate the lifecycle of
the industrial equipment (machines, production lines, robotic system, etc.) and to
implement the appropriate recovery strategies (refurbishment, re-manufacturing,
upgrade, re-use, repair, etc.).

The platform will be demonstrated in 5 different pilots belonging to the five
RECLAIM’s end users, where alternative industrial machines will be refurbished
and/or re-manufactured:

 The scenario of GORENJE (white goods manufacturer) includes robots’ cells

and white enamelling line.

 The scenario of FLUCHOS (footwear manufacturer) comprises cutting

machines.

 The scenario of PODIUM (wood manufacturer) contains machines for cutting,

drilling, and finishing.

 The scenario of HWH (producer of control systems in the welding sector)

comprises friction welding machines.

 The scenario of ZORLUTEKS (textile manufacturer) includes bleaching

machines.

1.3 Relation to other tasks and deliverables

The are also other deliverables which are more dedicated to requirements and use
cases: (D2.1, 7/2020), (D2.2, 7/2020), (D2.6, 3/2021), (D2.4, 1/2022), (D2.7,
3/2022). The architecture definition process has been progressively taken direct or
indirect inputs from them, following their submission deadlines.

1.4 Content and structure of this deliverable

The remainder of this deliverable is organized as follows: Section 2 describes the
methodology for creating an architecture description, whereas section 3, which is
the core of the deliverable, describes the architecture of the RECLAIM software
platform, applying the methods of section 2. There are also important annexes in
the end of the deliverable. Annex 1 lists the system requirements which are
satisfied by the software components of the architecture, Annex 2 contains the

The RECLAIM architecture specification (M10)

15

available specifications of hardware components, whereas Annex 3 includes the
individual data models defined by software component owners so far.

1.5 Terminology

The currently adopted domain-specific terminology used in the remainder of the
document is presented in Table 1 below.

Table 1 - RECLAIM-specific terminology

Term Definition

Adaptive Sensorial

Network & Digital

Retrofitting

Infrastructure

the part of the architecture which is responsible for near-

real-time data delivery from the machinery data collectors

(e.g. sensors, actuators, controllers) to RECLAIM repository

for the health status monitoring of the machines

AR Mechanisms multimodal interaction system which provides technicians

with an augmented reality view of several streams of data,

animated 3D stepwise instructions on disassembly and

reassembly required, as well as support in the form of on-

the-job remote assistance with real-time audio-visual

communication and 3D annotation to technicians during the

procedure

Cost Modelling and

Financial Analysis

Toolkit

cost estimation tool for cost and financial impact analysis,

which contributes to the Optimization Toolkit

Decision Support

Framwork

the technological core of RECLAIM, that guides the optimal

refurbishment and re-manufacturing of electromechanical

machines and robotics systems

Fault Diagnosis

and Predictive

Maintenance

Simulation Engine

using Digital Twin

component developing models to be used for monitoring and

predicting the performance and status of factory assets,

using the data collected by the Adaptive Sensorial Network

& Digital Retrofitting Infrastructure, machinery profiles and

expert feedback

In-situ Repair Data

Analytics
the toolkit that the project deploys to raise awareness of

the health status of the machine and situational of the shop

The RECLAIM architecture specification (M10)

16

floor during maintenance activities

Optimization

Toolkit for

Refurbishment &

Re-manufacturing

Planning

component which aims to support the optimization planning

through multi-variable monitoring of the machine’s

operational parameters where the effects of variable

changes will be possible to determine and combine known

best practices methodologies for model-based plant-site /

shop-floor control

Prognostic and

Health

Management

(PHM) Toolkit

comprehensive framework for predictive and preventive

control and management

RECLAIM

Repository

the component of RECLAIM architecture which is responsible

for storing raw data, pre-processed user input, trained

models, predictions and evaluation metrics of algorithms,

and delivering them to other components whenever needed

Refurbishment and

Re-manufacturing

Framework

the framework which processes the refurbishment /

remanufacturing steps and delivers the optimal steps to the

AR mechanisms

2. Architectural Design Methodology

This section presents the key concepts related to the methodology used to develop
the architectural design of the software system developed in RECLAIM.

Standards and best practices have been followed, as described in the next
subsections. In addition, there have been several remote technical teleconferences
to discuss, produce and refine the architecture design.

The duration of T2.3 is from M4 (1/2020) to M30 (3/2022), but it is split in three
iterations. These are M4-M9 (1-6/2020), M14-M20 (11/2020-5/2021) and M24-M30
(9/2021-3/2022). The first iteration defines the first version of the architecture,
whereas the other two iterations represent further improvements as feedback from
the technical work packages is being collected and processed. The first version
comprises the first consolidation of dependencies, inputs/outputs, and
specifications of architectural components. The purpose of the second version is to
present detailed information about the interfaces between the components, while
the last version is intended to describe in detail the whole platform in terms of
architecture, modules, dataflow, processes, APIs specifications, etc.

The RECLAIM architecture specification (M10)

17

The process followed is based on (1471-2000 - IEEE Recommended Practice for
Architectural Description for Software-Intensive Systems, 2000) and (ISO/IEC/IEEE
42010: Systems and Software Engineering - Architecture Description, 2011), by
which the former was superseded.

An architectural viewpoint is a collection of patterns, templates, and conventions
for constructing one type of architectural view. An example is the functional
viewpoint (and therefore a functional view), which contains all functions that
should be performed by the system, the responsibilities and interfaces of the
functional elements and the relation between them. These functions can be
described in a standardized way using UML diagrams. Moreover, it also describes
which stakeholders need to be involved and how their needs should be applied in
the architecture as stated in the "architectural perspectives" chapter by Rozanski
and Woods (N. Rozanski, 2012).

Based on the specification of the ISO/IEC/IEEE 42010:2011 standard, the main
concepts of architecture view and architecture viewpoint are formally defined as
follows:

• Architecture viewpoint: Work product establishing the conventions for

the construction, interpretation and use of architecture views to frame

specific system concerns

• Architecture view: A representation of a whole system from the

perspective of a related set of concerns

The initial user, system and operational requirements from T2.1 and T2.2, which
were obtained from the T2.1 survey or the communications with the pilots within
the context of T2.2, were the input for the first architecture design phase where a
first draft of the architectural description was created. Based on this architectural
description, the first prototype is going to be created, which can be seen as a
skeleton system with minimal functionality developed above that. These
development efforts will reveal some experiences and lessons learnt which in turn
will constitute a valuable source for the derivation of additional requirements and
the revision of already existing ones, within the context of T2.4.

The RECLAIM project decided on the following viewpoints from which the
architectural document views are derived:

• Context viewpoint: This describes interactions, relationships, and
dependencies between the system of interest and its environment. The
environment includes the external entities with which the system
interacts, e.g. other systems, users, or developers.

• Functional viewpoint: This describes the functional elements needed to
meet the key architectural requirements. It will present proposals in a
descriptive way and UML diagrams will facilitate the understanding of the
proposal. It depicts responsibilities, interfaces, and interactions between
the functional elements.

The RECLAIM architecture specification (M10)

18

• Information viewpoint: This describes the data models and the data flow,
as well as the distribution. The viewpoint also specifies which data will
be stored and where. Describing where data will be manipulated is also a
responsibility of this viewpoint.

• Deployment viewpoint: This describes how and where the deployment of
the system will take place and what dependencies exist, considering for
example hardware requirements and physical limitations. If there are
technology compatibility issues, they can be addressed in this viewpoint
too.

• Development viewpoint: This viewpoint addresses concerns from the
developers’ point of view. It describes the way in which the software
development process is supported, for example what conventions should
be followed and what the artefact management will look like.

In order to address quality properties and cross-cutting concerns, architectural
perspectives will be used. A typical example, which is a particular concern for
RECLAIM, is security: the way the data are secured, the communication channels in
which data will be transacted, and the functional elements needing to be
protected should be considered. Another perspective which is interesting is
availability of the hardware, the functional elements, the data, etc. There are also
relevant standards about safety and satisfaction, being these described in D2.2.
Furthermore, the performance perspective has been taken into account, in terms
of latency mitigation in data delivery between the Adaptive Sensorial Network or
the Users Interfaces on the one side and the RECLAIM platform on the other,
therefore in some cases dedicated components have been envisioned for more real-
time data communication than in case that these data are transferred through the
RECLAIM Repository. Finally, since numerous partners will be using/developing
different technologies, also the compatibility, which may be the most challeging
perspective, should be taken into account.

The detailed procedure followed during the course of T2.3 is described below.

2.1 First iteration

The first iteration consisted of a bottom-up phase, within which the architecture
was defined based on the technologies (mainly software, but also hardware
components) that relevant partners stated that they can bring to the project based
on their previous experience and their skills. The top-down phase, which is based
on the pilot needs, will be elaborated to a high extent in the next iteration, when
there will be more time for T2.3 participants to consider the pilot-oriented
requirements and use cases coming from T2.1 and T2.2. Particularly, regarding
T2.2, during the 2nd iteration the UML Use Case diagrams obtained from that task
will be instantiated as UML sequence diagrams.

The RECLAIM architecture specification (M10)

19

More especially, in the first iteration, the discussions on the definition of the
architecture started based on the conceptual architecture of the Description of
Action, which is shown in Figure 1, along with the descriptions of the related tasks.
During the phase of this process, the following steps were followed:

1. Owners of architectural components filled in templates to describe them,

along with system requirements satisfied by them. Presentations were also

created for the different components as a supplementary material.

2. A series of teleconferences took place so that the interdependencies of

components and Tasks are clearly specified, and based on the conclusions

from these discussions the consolidated view (Figure 2) was designed. This

regards a high-level informal figure depicting the communications among

services, frameworks, repositories, and hardware. In parallel, the high-level

functional view and the information view UML diagrams were created under

several refinements. The consolidated view started to be instantiated for

particular pilots in the end of the first iteration, but this instantiation is

going to be shown in the 2nd version of the architecture, because it has not

been completed sufficiently yet.

3. In order to define in detail the functional view, multiple UML component

diagrams were created, focusing on specific components and

communications with others.

4. An important component that was defined is the Data Handler of the

RECLAIM Repository, which is responsible to exchange data between the

Repository database and other components. Because the data need

transformations so as to be communicated, the data format that each

involved component accepts was defined, and afterwards a holistic data

model (common information model) was created so that these

transformations are made based on it.

5. The initial ideas for the development view were documented, based on

previous experience of the technical partners.

6. A high-level UML deployment view diagram was created after collaboration

among hardware and software providers.

The RECLAIM architecture specification (M10)

20

Figure 1: Conceptual technical architecture of RECLAIM as presented in the Grant Agreement

The consolidated view below shows that every pilot may use the RECLAIM
Repository and/or their own Repository for data storage, the RECLAIM dashboards
and services/frameworks or also their own services, including dashboards, if they
already exist. In order that the project’s achievements are demonstrated, every
pilot has to benefit at a high percentage from the project’s achievements. There
will be two main ways for data communication between components: the RECLAIM
Repository bus for communication through the RECLAIM Repository under
cybersecurity mechanisms, and the RECLAIM Service bus for more direct
communication (of relatively low amount of data) without intervention of the
repository. The consolidated view is described more extensively in D2.2.

The RECLAIM architecture specification (M9)

21

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N°869884

Figure 2: Consolidated view of RECLAIM

The RECLAIM architecture specification (M9)

22

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N°869884

The idea was to instantiate this view for every pilot, and this is envisioned for the
2nd iteration.

3. Architectural views

This is the core section of the deliverable and describes the architectural views
corresponding to the viewpoints mentioned in Section 2.

3.1 Functional and information view

As mentioned above, the first step of the bottom-up process during the first
iteration of T2.3 was the definition of architectural components and system
requirements satisfied by them. These were defined by the technical partners
responsible for bringing these components to RECLAIM. On the other hand,
requirements based on end user needs and questionnaires and specifications for
the RECLAIM framework are included in D2.1. These requirements are based on the
user scenarios and are used to evaluate the platform. Also, the purpose of D2.2,
D2.6 and D2.7 is to present in detail the use cases and operational (field-related)
requirements in three phases, as an outcome of T2.2 activities. Based on the
components and requirements, the functional and information views were defined.

Functional requirements specify the product's functionality, derived from its
fundamental purpose. They frame the solution space for the problem that is being
addressed by describing the way in which the system should behave in particular
situations: its inputs, its outputs and actions it needs to perform so as to
accomplish its fundamental purpose. Sometimes, functional requirements also
define explicitly what the system should not do or detail the needed exceptions
[see: (Sommerville, 2011)]. Although no established subcategories exist in order to
further sort functional requirements, the next lines show high level groups aiming
at illustrating some examples:

 Descriptions of the product’s desired functionality

 Explanation of the services that it should provide

 Details of the processing actions or operations which it must take

 Description of the way in which the system should react to particular inputs

The RECLAIM architecture specification (M10)

23

In contrast, non-functional requirements are the product’s properties, the qualities

and characteristics which make the product attractive, usable, fast, or reliable.

They are not concerned directly with the specific operations and services that the

product should perform or deliver, but they are related to emergent properties like

modifiability, scalability, and interoperability. At the same time, non-functional

requirements can reflect constrains or restrictions of the system. They are just as

relevant and critical as functional requirements for ensuring the solution success.

Non-functional requirements can be grouped based on following subcategories:

 Look and feel requirements (desired appearance for end users)

 Usability requirements (according to the intended end users and the context

of use)

 Performance requirements (speed, size, accuracy, safety, reliability, etc.)

 Operational requirements (desired operating environment)

 Maintainability and portability requirements (how adaptable it must be)

 Security requirements (security, integrity, and confidentiality)

 Cultural and political requirements (human factors)

 Legal requirements (compliance with applicable laws)

Look and feel, usability and cultural requirements are not as relevant as the others

for the assessment of requirements for a software platform, but they are highly

important for the assessment of qualities and aspects of the user interfaces to be

developed. The current set of requirements can be found in the online workspaces

of the project and thus has become accessible for all users and also traceable for

evaluation of design solutions, while any updates are made known in real time to

the consortium.

3.1.1 System requirement description (Volere-based)

The Volere process recommended by Robertson and Robertson (S. Robertson, 1999)

verifies that all important aspects of requirements are addressed carefully and that

the methods applied have practically proven their value. It has been proven to be

very valuable to put in the effort to define the global constraints that affect the

project and the fine-grained distinction of different types of (non-)functional

The RECLAIM architecture specification (M10)

24

requirements. The philosophy of Robertson and Robertson allows the requirements

to be processed in a structured way, assuring that they can always be applied and

tested.

The workflow ensuring that all necessary details and procedures in the Volere

schema are followed is rather complex, and it was decided to support this process

with a tool for all partners within RECLAIM.

It was decided to use JIRA, a web-based bug tracker that allows implementing and

tracking the workflow of the Volere schema. Figure 3 contains a screenshot of JIRA

showing a part of the list of system requirements.

Figure 3: Screenshot of JIRA with a part of the list of requirements

The main fields of a requirement template based on the Volere schema follow:

 The name of a requirement describes it in a single sentence. This description

tells about the purpose of the requirement and should be clear and brief.

 The rationale of a requirement expresses the reason behind its existence,

explaining its importance and its contribution to the product’s purpose. The

rationale facilitates the understanding of the requirement.

 The Fit Criterion is the quantified goal that the realization of the

requirement has to meet. This field determines when the requirement is

met. It should be written in a precise quantifiable way. The Fit Criterion sets

the standard to which the product is constructed by the developer.

 Priority is an essential field which defines the relevance of this requirement

in relation to the other requirements. It allows the specified requirement to

be classified in one of 5 categories: “Highest”, “High”, “Medium”, “Low”

and “Lowest”. The rating was taken into account during the quality check.

The RECLAIM architecture specification (M10)

25

The priority of a requirement is based on the next fields in the Volere

schema.

 The source defines if a requirement was raised by the Description of Action

itself, primary or secondary stakeholders, or through discussions among

consortium members, by vision and technical scenarios.

 The component(s) that the requirement is associated to.

 The status, which is an estimation whether the requirement is well-defined

and within the scope of the project.

Figure 4 shows a screenshot of JIRA with the details of a particular requirement.

Figure 4: Screenshot of JIRA with the details of a particular requirement under the Volere schema

3.1.2 System requirements workflow

Three different user groups are involved in the requirements process:

• Reporter: The organization of the person who creates the requirement.

• Quality check assignee: Each newly reported requirement is assigned to a

single organization – the quality check assignee. This organization is

responsible for passing the requirement through the quality check.

• Implementation assignee(s): organization(s) responsible to implement a

requirement after it has passed a quality check successfully

The RECLAIM architecture specification (M10)

26

Figure 5 displays a requirement’s possible states and the possible transitions among

them.

Figure 5: Structure of the Requirements Workflow

When a reporter creates a requirement, it gets assigned the status open. This

reporter assigns the requirement to a quality check assignee, that changes the

requirement’s status into part of specification if it is complete and unambiguous.

The quality check assignee and the reporter belong to different organizations. A

requirement that has passed the quality check has its text fields filled in sensibly,

with appropriate values chosen from the drop-down lists.

A requirement can fail to pass the quality gateway for the next reasons:

1. It can be incomplete. Some fields may have meaningless entries, e.g. “?”.

2. It can be ambiguous; certain terms are not clearly specified.

3. It is too general or does not make sense at all; this can happen for example

when the reporter of the requirement does not include sufficiently detailed

information in order for others to understand the reasoning behind it.

4. It is a duplicate of another requirement.

5. It is out of the project's scope.

If a requirement fails the quality check, it gets rejected for one of the following

possible reasons: out of scope / duplicate / conflicting / nonsense / ambiguous /

incomplete; the status with the respective name is assigned to it. When the

requirement is updated properly, its status is changed to reopened. This status

almost equals the initial status open and the quality check process restarts. The

only difference is that the status open corresponds to requirements that have

The RECLAIM architecture specification (M10)

27

never been checked for quality, whereas the status reopened indicates that the

respective requirement went through the quality control at least once.

When a requirement passes the quality gateway, it means that its implementation

and validation will be attempted.

3.1.3 Overview of system requirements

This section describes the status of the initial system requirements. Their full list

can be found in Annex 1: System requirements list. The purpose of this approach is

to provide a simple and structured representation of requirements, that will be

used as a reference for the current steps to develop the platform and the

applications. The requirements will be updated during the project lifetime,

according to the emerging needs for new or modified features. Various methods

will be applied to improve the understanding of the user needs and the user-

perceived qualities of the prototypes. Especially, the requirements will be

reviewed during the evaluation of the first application prototypes so that an

improved set of requirements is created [see for example (B. Schmidt-Belz, 1999)].

Every requirement listed in the requirements table obtains a unique ID to refer to.

The description of a requirement is synthetic but clear.

Current number of requirements: 49 (55 together with the rejected ones)

According to priority:

 Highest: 1

 High: 15

 Medium: 30

 Low: 3

 Lowest: 0

According to requirement type:

 Functional: 43

 Non-Functional: 6

According to status (among the non-rejected ones):

 Validated: 0

The RECLAIM architecture specification (M10)

28

 Implemented: 0

 Under implementation: 1

 Part of specification: 47

 Open: 1

 Re-opened: 0

 Consensus needed: 0

3.1.4 Software components gathering - overview

JIRA was used also for filling in different templates for software components. This
was done primarily because every component satisfies at least one system
requirement, and thus it makes sense to view components and requirements in
parallel.

The following fields are included in the component template:

 Name of New Component/Service: Name of the architectural element, e.g.

Baseline Flexibility Estimation.

 Functionality: Short description of the operation of this module/component.

A list of functions and operations will be an added value.

 Input Connections & Interfaces: Components from which it receives input

(input dependencies) and available connection interfaces, e.g. API.

 Output Connections & Interfaces: Components to which it sends the results

(output dependencies) and available interfaces, e.g. API.

 Functional Requirements: Functional requirements that the module

satisfies, respective IDs.

 Non-functional Requirements: Non-functional requirements that the module

satisfies, respective IDs.

 Input parameters [attribute/parameter, short description (if necessary),

data type (int/string/list/object etc.), data format (XML/JSON etc.), value

range & frequency (measurement unit, range, sampling rate), origin (source

component/module sending input)]

 Output parameters [attribute/parameter, short description (if necessary),

data type (int/string/list/object etc.), data format (XML/JSON etc.), value

range & frequency (measurement unit, range, sampling rate), origin (source

component/module getting output)]

 Software Requirements / Development Language: Software requirements

related to the architectural element, programming language used during the

development of the component.

 Hardware Requirements: Hardware requirements of the module,

specifications of hardware requirements necessary for the best functionality

of the component. Any special sensor included in the sensor specification

can be included here as reference.

The RECLAIM architecture specification (M10)

29

 Communications: Specific communication requirements either for data input

or for data output.

 Status of the development of the component: Status among “already

developed”, “partially developed” and “to be developed from scratch”.

 Comments (optional): Comments by any organization about the correctness

of the component. Each person writing some comment should specify their

organization, as well as the organization(s) addressed using the symbol "@".

In Figure 6, a filled in component template is shown.

Figure 6: Screenshot of JIRA with the details of a particular component template. On the left, a part of the
list of RECLAIM JIRA templates (requirements, components etc.) is shown.

The component template has been completed for 23 (sub)components.

3.1.5 Hardware specifications gathering - overview

The following template for hardware specifications was filled in also in JIRA by
hardware providers:

 Device/Gateway/Infrastructure Description and Functionality:

o Name: Provide the name of the sensor.

o Short Description: Provide a brief statement of the sensor,

mentioning its WP/Task Number within the overall architecture.

o Measurement: Provide description of the sensor measurement

(directly, how, any restrictions).

The RECLAIM architecture specification (M10)

30

o Digital/Analog Signals: Describe the signalling mode (analog, TTL,

CMOS, etc.), if applicable for the sensor.

o Functionality: Describe how the sensor functions within the project’s

system architecture.

 Physical Characteristics:

o Dimensions: length x width x height in mm

o Weight: total weight of sensor in kg

o Material: materials used for its construction

o Mounting: how the sensor is attached

 Operational Characteristics:

o Measurement Range: minimum to maximum values that can be

measured by the sensor (e.g. -40 to +80oC)

o Measurement Resolution: level of measurement (e.g. to 0.01oC)

o Accuracy: accuracy of the measurement (e.g. ±x% of actual reading)

o Zero Error: amount required to pre-calibrate sensor and/or adjust

readings by (e.g. ±0.05oC)

o Temperature: minimum to maximum temperature levels in oC: range

in which the sensor can operate

o Humidity: minimum to maximum humidity levels in %: range in which

the sensor can operate

o Pressure: minimum to maximum pressure levels in Pa/kgm-3/N etc.:

range in which the sensor can operate

o Lifetime: specify approximate lifetime under standard operating

conditions

 Hardware Requirements:

o Power Requirements: specify electrical power supply required for

sensor to operate without disruption

o Data Connections: specify the communication networks and protocols

involved, e.g. USB, GSM, WiFi, Bluetooth

o Data Format: specify the output format of the sensor

o Data Rate: specify at what rate data are read/extracted/logged

o Data Availability: specify whether the data stream is continuous,

periodic, on demand etc.

o Transmission Frequency: specify the power of the data stream, e.g. X

mW, if applicable

 Software Requirements (e.g. API creation):

o Software Required: yes/no

o Software Details: provide details of software required for proper

sensor function

 Note: write any important note related to the sensor

The RECLAIM architecture specification (M10)

31

During the first iteration of T2.3, the templates of 5 hardware components were
completed with all information available at that time. The full list of hardware
templates may be found in Annex 2: Hardware components list.

3.1.6 Overall functional architecture

The figure below shows the functional view of the architecture, which is based on
the conceptual architecture, the consolidated view and the feedback received by
component owners. The Adaptive Sensorial Network with IoT Cybersecurity
(Physical Layer) is mainly responsible for sending raw sensorial data to the Real-
time Decision Making Layer, which receives also user feedback from the Users
Interfaces in order to perform all computations related to data analysis and
afterwards send the visualization data to the end user through the Users Interfaces
(User Facilities Layer). In particular, the Real-time Decision Making Layer includes
the repositories for data storage, and the services and frameworks of the Decision
Support Framework, the In-Situ Repair Data Analytics, the AR mechanisms, and the
Life Cycle Assessment / Life Cycle Cost component. Finally, it is possible that some
configuration data are transferred back from the Real-time Decision Making Layer
to the Physical Layer.

Figure 7 - Functional view diagram

3.1.7 Information view

The information flow diagram, which shows what kinds of data are exchanged
between all main software components, follows below. More detailed and

The RECLAIM architecture specification (M10)

32

component-specific diagrams are shown in the next subsection, which is related to
the functional view.

Figure 8 - RECLAIM information flow

3.1.8 Software component details and diagrams

In this subsection, the UML diagrams for all main software components, showing
their internal architecture, as well as their internal and external dependencies, are
included. Also, the content of the component templates is included.

A hierarchical overview of the components follows:

 Adaptive Sensorial Network with IoT Cybersecurity

o IoT Gateway software stack

o FPGA-accelerated cyber security module

o ASN Sensor Protocol Adaptation

o ASN Actuator Protocol Adaptation

o Machine Vision Toolkit

 RECLAIM Repository

o Distributed data storage and analytics (DRy)

o Data Handler with Cybersecurity

 Decision Support Framework

o RECLAIM Reliability Analysis Tool

o Machinery Operational Profiling

The RECLAIM architecture specification (M10)

33

o Fault Diagnosis and Predictive Maintenance Simulation Engine using

Digital Twin

 Digital Twin for Simulation

 Anomaly Detection

 Predictive maintenance

o Optimization Toolkit for Refurbishment and Remanufacturing Planning

 Algorithms for quality prediction and process parameter

optimization

o Prognostic and Health Management Toolkit

 Degradation models

o Cost Modelling and Financial Analysis Toolkit

o Integrated Decision Support Framework (DSF) for Refurbishment &

Remanufacturing Optimization - core component

 In-Situ Repair Data Analytics

 AR mechanisms

 Life Cycle Assessment

 Users Interfaces for the Integrated Decision Support Framework, the In-Situ

Repair Data Analytics and the AR mechanisms

3.1.8.1 Adaptive Sensorial Network with IoT Cybersecurity

The component diagram of the ASN with IoT Cybersecurity follows below, and its
subcomponents are described in more detail afterwards.

The RECLAIM architecture specification (M10)

34

Figure 9 - Adaptive Sensorial Network with IoT Cybersecurity component diagram

3.1.8.1.1 IoT Gateway software stack

Table 2 - Filled-in software component template for the IoT Gateway software stack

Issue Links: Relates

relates to REC-77 IoT Gateway with AI acceleration (T3....

relates to REC-79 ASN Sensor Protocol Adaptation (T3.1,...

relates to REC-80 ASN Actuator Protocol Adaptation (T3....

Component Type: Software

Functionality: The software stack will be comprised of the communication
and protocol adaptation services for the IoT device
communication and will provide the necessary tools,
libraries and middleware for using the tensorflow
framework on IoT gateways based on the NVIDIA Jetson
platform.

http://jira-projects.iti.gr:8080/browse/REC-77
http://jira-projects.iti.gr:8080/browse/REC-79
http://jira-projects.iti.gr:8080/browse/REC-80

The RECLAIM architecture specification (M10)

35

Input Connections &
Interfaces:

IEEE1451 packets over UDP over 6LoWPAN, MQTT, NGSI2

Output Connections
& Interfaces:

IEEE1451 packets over UDP over 6LoWPAN, MQTT, NGSI

Functional
Requirements:

REC-23, REC-24

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. Sensor data
Short description: Data acquired from various deployed
sensors
Data type: data frame with headers
Data format: IEEE1451
Value range & frequency: -
Data received from: IoT Nodes
2. Actuation data
Short description: Data to be transmitted to various
deployed actuators
Data type: data frames
Data format: JSON
Value range & frequency: -
Data received from: MQTT publishers

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

1. Sensor data
Short description: Data acquired from various deployed
sensors
Data type: data frames
Data format: JSON
Value range & frequency: -
Data sent to: MQTT publishers
2. Actuation data
Short description: Data to be transmitted to various
deployed actuators
Data type: data frame with headers
Data format: IEEE1451
Value range & frequency: -
Data sent to: IoT Nodes

Hardware
Requirements:

REC-77

Status of the
development of the
component:

Partially Developed

2 data model of FIWARE

http://jira-projects.iti.gr:8080/browse/REC-23
http://jira-projects.iti.gr:8080/browse/REC-24
http://jira-projects.iti.gr:8080/browse/REC-77

The RECLAIM architecture specification (M10)

36

3.1.8.1.2 FPGA-accelerated cyber security module

Table 3 - Filled-in software component template for the FPGA-accelerated cyber security module

Issue Links: Relates

relates to REC-47 Cybersecurity monitoring and protecti...

Component Type: Software

Functionality: The modules comprising this software will a) facilitate the
use of acceleration (FPGA) for detecting and analysing
cybersecurity threats; b) provide the monitor and
management modules of the Cyber security GW; c) provide
the cyber threat detection and analysis modules; d) provide
the threat mitigation/control modules, that will block the
threats; and e) the communication/interfacing modules,
that will enable for the interaction with other external
components (central logging server, software agents, etc.)

Functional
Requirements:

REC-47

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. Cyber threat detection and analysis module
Short description: Anasyses the network traffic towards
detecting cyber security threats.
Data type: Network traffic
Data format: Raw bytes, JSON, XML
Value range & frequency: -
Data received from / sent to: GW's Network interfaces
2. FPGA-ARM middleware
Short description: facilitates the use of FPGA from the SW
(ARM) modules.
Data type: -
Data format: binary
Value range & frequency: -
Data received from / sent to: SW modules deployed in the
ARM, Accelerated functionalities deployed in the FPGA.
3. Firewall
Short description: embedded firewall functionallity adapted
per equipment or set of machineries/equipment at the
production line.
Data type: Control commands, Network traffic
Data format: JSON for delivering control commands and
describing the firewall rules.
4. Accelerated encryption
Short description: based on AES algorithm specifically
designed for FPGA. Use for encrypt sensitive information

http://jira-projects.iti.gr:8080/browse/REC-47
http://jira-projects.iti.gr:8080/browse/REC-47

The RECLAIM architecture specification (M10)

37

where needed
Data type: -
Data format:
Value range & frequency: -
Data received from / sent to: Machinery Data Collectors,
RECLAIM repository, In-Situ Repair Data Analytics
5. Local Dashboard for Visualisation and Management
Short description: Dashboard for Visualisation and
Management
Data type: -
Data format: -
Value range & frequency: -
Data received from / sent to: -

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Similar to the input parameters.

Hardware
Requirements:

FPGA-accelerated network appliance supplied by FINT

Communications: Ethernet interface x 2

Status of the
development of the
component:

Partially Developed

3.1.8.1.3 ASN Sensor Protocol Adaptation

Table 4 - Filled-in software component template for the ASN Sensor Protocol Adaptation

Issue Links: Relates

relates to REC-72 IoT Gateway software stack (T3.1, FIN...

relates to REC-77 IoT Gateway with AI acceleration (T3....

Functionality: This component is responsible for the protocol adaptation
of the deployed sensor devices in the shop floors which
communicate through the IoT Gateways. It registers these
devices through the RECLAIM Repository and exposes a
unified communication interface, irrespective of the
underlying communication protocol of each device. It

http://jira-projects.iti.gr:8080/browse/REC-72
http://jira-projects.iti.gr:8080/browse/REC-77

The RECLAIM architecture specification (M10)

38

employs a time ordered volatile queue mechanism ensuring
that no data are lost in case of brief communication failures
with the RECLAIM Repository and timestamps sensor data
coming from sensors that do not inherently provide time
information.

Input Connections &
Interfaces:

Sensor devices connected to the IoT Gateway through either
Ethernet, WiFi, 6LoWPAN over IEEE802.15.4 or LoRa.

Output Connections
& Interfaces:

RECLAIM Repository, Decision Support Framework.

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

Adapted to the respective data and communication format
supported by the respective sensor device.
Supported protocols:
- IEEE1451 over IEEE1451.5
- MODBUS-TCP
- MQTT
- LoRaWAN

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

- Analog input value
- Digital input value
NGSI JSON format

Status of the
development of the
component:

Partially Developed

3.1.8.1.4 ASN Actuator Protocol Adaptation

Table 5 - Filled-in software component template for the ASN Actuator Protocol Adaptation

Issue Links: Relates

relates to REC-72 IoT Gateway software stack (T3.1, FIN...

relates to REC-77 IoT Gateway with AI acceleration (T3....

Functionality: This component is responsible for the protocol adaptation
of the deployed actuator devices which communicate
through the IoT Gateways. It registers these devices through
the RECLAIM Repository and exposes a unified
communication interface, irrespective of the underlying

http://jira-projects.iti.gr:8080/browse/REC-72
http://jira-projects.iti.gr:8080/browse/REC-77

The RECLAIM architecture specification (M10)

39

communication protocol of each device.

Input Connections &
Interfaces:

RECLAIM Repository, Decision Support Framework.

Output Connections
& Interfaces:

Actuator devices connected to the IoT Gateway through
either Ethernet, WiFi, 6LoWPAN over IEEE802.15.4 or LoRa.

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

- Analog output value
- Digital output value
NGSI JSON format

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Adapted to the respective data and communication format
supported by the respective actuator device.
Supported protocols:
- IEEE1451 over IEEE1451.5
- MODBUS-TCP
- MQTT
- LoRAWAN

Status of the
development of the
component:

Partially Developed

3.1.8.1.5 Machine Vision Toolkit

Table 6 - Filled-in software component template for the Machine Vision Toolkit

Issue Links: Relates

relates to REC-76 Machine Vision System (T3.1, FINT)

Functionality: The toolkit is comprised of: computer vision library which
provides the modules used for object identification and
attributes recognition, CUDA toolkit for enabling the use of
CUDA cores of the hardware platform, machine learning
platform with CUDA support which provides the means for
hardware acceleration of the computer vision library,
Python services which utilize the above, perform the object
analysis and generate output based on the MachineVision
data model.

Input Connections & Computer vision camera with Ethernet and/or USB

http://jira-projects.iti.gr:8080/browse/REC-76

The RECLAIM architecture specification (M10)

40

Interfaces: interface.

Output Connections
& Interfaces:

Output is sent to the RECLAIM Repository and the Decision
Support Framework.

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

- Video feed from computer vision cameras.
- Requested part IDs in NGSI (JSON) format.

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Output parameters:
- Position of computer vision camera in the plant
- Identified Part ID
- Part match with requested part ID boolean value
- Part correctly aligned boolean value
Output format: NGSI JSON

Hardware
Requirements:

REC-76

Status of the
development of the
component:

To be developed from scratch

3.1.8.2 RECLAIM Repository

The RECLAIM Repository consists of two main sub-components: the Distributed data
storage and analytics (DRy) and the Data Handler with cybersecurity.

http://jira-projects.iti.gr:8080/browse/REC-76

The RECLAIM architecture specification (M10)

41

3.1.8.2.1 Distributed data storage and analytics (DRy)

Figure 10: Distributed data storage and analytics component diagram

Table 7 - Filled-in software component template for the Distributed data storage and analytics

Component Type: Software

Functionality: The Distributed Data Storage and Analytics component is a
storage and a set of data aggregators tailored according to
the requirements from RECLAIM. The storage will store data
from the machines connected to the RECLAIM environment
as well as the data calculated by the different algorithms.
Internally, the component accounts with two data buses:
Kafka data bus to serve the data stored in the storage to
the rest of the RECLAIM system and an MQTT data bus to
store the data coming from the sensors. In addition, two
extra modules are present: one to generate the necessary
metadata for the calculation of the three indexes and
another one (based on Spark) to analyse the data and
extract patterns from the underlying data.

DRy ICE is based on Apache Druid, a column-store
distributed database. Since Joins are not supported and the
storage model is based on columnar decomposition, it's

The RECLAIM architecture specification (M10)

42

based on NoSQL technology.

This software is part of the RECLAIM repository together
with the Data Handler with Cybersecurity.

Input Connections &
Interfaces:

REC-73 (Data Handler with Cybersecurity)

Output Connections
& Interfaces:

REC-73 (Data Handler with Cybersecurity)

Functional
Requirements:

REC-1, REC-3, REC-5, REC-6, REC-7, REC-8, REC-11, REC-23,
REC-24, REC-26, REC-27, REC-35

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

No need to pre-define data models before data ingestion

Software
Requirements /
Development
Language:

Series of docker images and access to physical space for
data storage. Based on Druid and Spark

Hardware
Requirements:

Typically runs in a server box

Status of the
development of the
component:

Partially Developed

http://jira-projects.iti.gr:8080/browse/REC-73
http://jira-projects.iti.gr:8080/browse/REC-73
http://jira-projects.iti.gr:8080/browse/REC-1
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-11
http://jira-projects.iti.gr:8080/browse/REC-23
http://jira-projects.iti.gr:8080/browse/REC-24
http://jira-projects.iti.gr:8080/browse/REC-26
http://jira-projects.iti.gr:8080/browse/REC-27
http://jira-projects.iti.gr:8080/browse/REC-35

The RECLAIM architecture specification (M10)

43

3.1.8.2.2 Data Handler with Cybersecurity

Figure 11 - Data Handler with Cybersecurity component diagram

Table 8 - Filled-in software component template for the Data Handler with Cybersecurity

Component Type: Software

Functionality: This component transforms the format of data exchanged
between the RECLAIM Repository and other components. A
holistic data model (information model) will be used for
storing data in the database of the RECLAIM Repository. The
data handler will include also cybersecurity mechanisms
that will ensure the secure data communication with the
Distributed data storage and analytics component. It needs
to be clarified among partners during which of the following
transfers the data handler will need to be transforming the
format: i] Input from machinery data collectors and end
users to RECLAIM Repository. ii] Input from RECLAIM
Repository database to the algorithmic components (DSF,
In-Situ Repair Data Analytics, AR mechanisms). iii] Output
from algorithmic components to RECLAIM Repository
database. iv] Output from RECLAIM Repository database to
users interfaces.

Input Connections &
Interfaces:

Adaptive Sensorial Network with IoT Cybersecurity (Digital
Retrofitting API), Distributed Storage and Analytics,
algorithmic components (Digital Retrofitting API), Users
Interfaces

Output Connections
& Interfaces:

Users Interfaces, Distributed Storage and Analytics,
algorithmic components (Digital Retrofitting API, RECLAIM

The RECLAIM architecture specification (M10)

44

3rd party API)

Functional
Requirements:

REC-3, REC-5, REC-7, REC-8, REC-9, REC-10, REC-11, REC-
23, REC-24, REC-35, REC-37

Non-Functional
Requirements:

REC-12, REC-13, REC-14, REC-36

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. Input from machinery data collectors and end users to
RECLAIM Repository
Short description: -
Data type: -
Data format: format acceptable by pilots
Value range & frequency: -
Data received from: Adaptive Sensorial Network +
Cybersecurity
2. Input from RECLAIM Repository database to the
algorithmic components
Short description: -
Data type: -
Data format: holistic data model format
Value range & frequency: -
Data received from: Distributed data storage and analytics
(DRy)
3. Output from algorithmic components to RECLAIM
Repository database
Short description: -
Data type: -
Data format: format acceptable by algorithmic components
Value range & frequency: -
Data received from: Decision Support Framework, In-situ
Repair Data Analytics, AR mechanisms, Life Cycle
Assessment / Life Cycle Cost
4. Output from RECLAIM Repository database to Users
Interfaces
Short description: -
Data type: -
Data format: holistic data model format
Value range & frequency: -
Data received from: Distributed data storage and analytics
(DRy)

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,

1. Input from machinery data collectors and end users to
RECLAIM Repository
Short description: -
Data type: -
Data format: holistic data model format
Value range & frequency: -
Data sent to: Distributed data storage and analytics (DRy)

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-9
http://jira-projects.iti.gr:8080/browse/REC-10
http://jira-projects.iti.gr:8080/browse/REC-11
http://jira-projects.iti.gr:8080/browse/REC-23
http://jira-projects.iti.gr:8080/browse/REC-23
http://jira-projects.iti.gr:8080/browse/REC-24
http://jira-projects.iti.gr:8080/browse/REC-35
http://jira-projects.iti.gr:8080/browse/REC-37
http://jira-projects.iti.gr:8080/browse/REC-12
http://jira-projects.iti.gr:8080/browse/REC-13
http://jira-projects.iti.gr:8080/browse/REC-14
http://jira-projects.iti.gr:8080/browse/REC-36

The RECLAIM architecture specification (M10)

45

destination): 2. Input from RECLAIM Repository database to the
algorithmic components
Short description: -
Data type: -
Data format: format acceptable by algorithmic components
Value range & frequency: -
Data sent to: Decision Support Framework, In-situ Repair
Data Analytics, AR mechanisms, Life Cycle Assessment / Life
Cycle Cost
3. Output from algorithmic components to RECLAIM
Repository database
Short description: -
Data type: -
Data format: holistic data model format
Value range & frequency: -
Data sent to: Distributed data storage and analytics (DRy)
4. Output from RECLAIM Repository database to Users
Interfaces
Short description: -
Data type: -
Data format: format acceptable by pilots
Value range & frequency: -
Data sent to: Users Interfaces

Software
Requirements /
Development
Language:

Java / Python / C++

Hardware
Requirements:

no requirements

Communications: no communication requirements

Status of the
development of the
component:

To be developed from scratch

3.1.8.3 Decision Support Framework

The Decision Support Framework (DSF) includes all subcomponents corresponding
to WP4, WP3 and the Reliability Analysis Tool from T2.5. Its main subcomponent is
the DSF core, corresponding to T4.4. The high-level diagram of the DSF is shown
below, whereas the more detailed diagrams of its subcomponents follow right
after.

In principle, the DSF subcomponents receive historical and/or real-time input data
from the RECLAIM or a Pilot Repository, but in particular cases (at least for the

The RECLAIM architecture specification (M10)

46

PHM Toolkit) dedicated interfaces are going to be implemented for faster real-time
data acquisition directly from the ASN. As described later in more detail, some
subcomponents of the DSF will have their own APIs, mainly for data visualization
but also for user feedback with manual data in some cases, whereas other
subcomponents will post their predictions to the repository so that they can be
visualized through its API or reused by the same and/or other (sub)components.
Finally, it will be possible for a subcomponent to execute another subcomponent
with some input and obtain respective output. This will be needed at least in case
that the "other subcomponent" is the Cost Modelling & Financial Analysis Toolkit,
which will not post directly its output for particular input, but the Optimization
Toolkit and the DSF Core will execute it for multiple input considerations in order
to optimize cost w.r.t. the input, and afterwards the last two subcomponents may
post the cost for particular scenarios, e.g. the optimized one and the naive
approach.

Figure 12 - DSF high-level component diagram

The RECLAIM architecture specification (M10)

47

3.1.8.3.1 RECLAIM Reliability Analysis Tool

Figure 13 - Reliability Analysis Tool component diagram

Table 9 - Filled-in software component template for the Reliability Analysis Tool

Component Type: Software

Functionality: The Reliability Analysis Tool implements statistic analysis to
calculate machines reliability and average residual useful
life. Starting from historical data (e.g. failure occurrences)
of machine’s components and/or sub-systems, the
Reliability Analysis Tool is able to build the related failures
probability functions (2-parameter Weibull, 3-parameter
Weibull etc.) and to calculate failure probability of the
single components and of the overall machine.
This tool has to be used to develop simple analysis in order
to have a first overview of machines' reliability and status.
It includes a simple interface supporting companies in
providing the required data and in performing the analysis.

The tool is composed by the following sub-components:
-PluginManagement: Since it may be required to have
custom distribution fitting functions, a plugin approach has
been chosen. The component will handle all the aspects of
managing the various plugins installed and to be installed on

The RECLAIM architecture specification (M10)

48

the modelling platform.
-UserGUI: This component represents the whole GUI that
the user will be presented with. Not only the graphic aspect
but also the retrieval of information to be displayed on the
latter.
-AnalysisExecutor: Component in charge of executing the
analysis upon user request. The executor will initialize the
required function from the PluginManagement component
and save the results on database, where they can be
consulted by the user or stored into the RECLAIM repository.
-ComponentsDesigner: This component will handle the
design of the system structure, allowing the user to design a
flow diagram that represents the components in the system.
-Security: This component is in charge of authenticating the
users and allowing them to operate only on their systems.
-Persistency: The persistency component is in charge of
handling all the aspects of the data storage of the platform.
An embedded database like H2 or a server database like
PostgreSQL will be used. The integration with the database
and the rest of the application will likely be implemented
using the Spring JPA interfaces.

Most of the data will be saved within the tool database,
while the data necessary for the calculation of the health
index (T3.2) will be made available in the RECLAIM
Repository.

Input Connections &
Interfaces:

RECLAIM Repository (IntegrationAPI)

Output Connections
& Interfaces:

RECLAIM Repository (IntegrationAPI), UserGUI (DesignerAPI,
DataAPI, AuthenticationAPI)

Functional
Requirements:

REC-3, REC-6, REC-7, REC-9

Non-Functional
Requirements:

REC-12

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. MTTR
Short description: Historical data on maintenance
Data type: list of floats
Data format: CSV
Value range & frequency: >0
Data received from: database/file
2. MTTF
Short description: Historical data on failure
Data type: list of floats
Data format: CSV

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-9
http://jira-projects.iti.gr:8080/browse/REC-12

The RECLAIM architecture specification (M10)

49

Value range & frequency: >0
Data received from: database/file
3. MTBF
Short description: Historical data on failure
Data type: list of floats
Data format: CSV
Value range & frequency: >0
Data received from: database/file
4. Other data
Short description: Other data that allows to calculate MTTR,
MTTF or MTBF could be included (e.g. maintenance dates)
Data type: -
Data format: -
Value range & frequency: -
Data received from: -

Software
Requirements /
Development
Language:

Python

Status of the
development of the
component:

Already Developed

3.1.8.3.2 Machinery Operational Profiling

Figure 14 - Machinery Operational Profiling component diagram

The RECLAIM architecture specification (M10)

50

Table 10 - Filled-in software component template for the Machinery Operational Profiling

Component Type: Software

Functionality: The Machinery Operational Profiling (T3.2) algorithm
calculates the three indexes (Health, Performance,
Production) to generate the profile of the machine based on
the data and parameters provided by the machines of the
user partners. These data can either be manual (based on
manually entered maintenance data or estimated changes),
static (based on specification and functionalities from the
machines) or dynamic (based on capacity, usage, history…).

In terms of dependency, the Machinery Operational Profiling
is part of the Decision Support Framework and the
calculated indexes will then be stored in the RECLAIM
Repository.

Input Connections &
Interfaces:

REC-59 [Distributed data storage and analytics (DRy) (T3.2,
ICE)] through REC-73 (Data Handler with Cybersecurity)

Output Connections
& Interfaces:

REC-59 [Distributed data storage and analytics (DRy) (T3.2,
ICE)] through REC-73 (Data Handler with Cybersecurity)

Functional
Requirements:

REC-3, REC-34, REC-39, REC-52

Non-Functional
Requirements:

REC-36

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

Data from machines, see template from D3.2

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Health-index, Performance-index, Production-index

Software
Requirements /
Development

Ad-hoc development (most probably based either on Java or
Python)

http://jira-projects.iti.gr:8080/browse/REC-59
http://jira-projects.iti.gr:8080/browse/REC-73
http://jira-projects.iti.gr:8080/browse/REC-59
http://jira-projects.iti.gr:8080/browse/REC-73
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-34
http://jira-projects.iti.gr:8080/browse/REC-39
http://jira-projects.iti.gr:8080/browse/REC-52
http://jira-projects.iti.gr:8080/browse/REC-36

The RECLAIM architecture specification (M10)

51

Language:

Status of the
development of the
component:

To be developed from scratch

3.1.8.3.3 Fault Diagnosis and Predictive Maintenance Simulation Engine using
Digital Twin

Figure 15 - Fault Diagnosis and Predictive Maintenance Simulation Engine using Digital Twin component
diagram

Table 11 - Filled-in software component template for the Fault Diagnosis and Predictive Maintenance
Simulation Engine using Digital Twin

Component Type: Software

Functionality: This is the component corresponding to T3.3 and building
block 6. The main goal of this component is to create a
Digital Twin of the factory environment and to use it to
monitor and predict the performance and status of factory
assets. This will allow providing to the user all the features
needed to schedule the maintenance works on the machines
to: avoid failures being predicted by the "Prognostic and
Health" algorithms defined in the building block 5; to
perform proper maintenance planning, optimizing the
production throughput and reducing the production lines

The RECLAIM architecture specification (M10)

52

stoppages.

This component includes the following sub-components:
REC-61, REC-66 and REC-67.

Furthermore, this component includes the following
components:
1) AI environment - it is the engine leveraged to host and
run the Fault Diagnosis and Predictive Maintenance
algorithms (including REC-66 and REC-67)
2) AI engine - it is hosted in the AI environment and it is
used to abstract the heterogeneous algorithms of Fault
Diagnosis and Predictive Maintenance and to control their
interactions.
3) Orchestrator - It is used to orchestrate all tasks of the
component, coordinating the interactions among AI Engine
and the distributed Simulation Environment. Furthermore, it
receives the historical and real-time data from REC-72,
store them and process them with data quality mechanisms.
4) Simulation Environment - it is a distributed environment
composed by a set of distributed Digital Twin for simulation
(REC-61) running on different machines, each one wrapped
by a Simulation Manager that expose its features through
common API.

Input Connections &
Interfaces:

Distributed data storage and analytics REC-59 (through Data
Handler - REC-73)
IoT Gateway software stack (REC-72)

Output Connections
& Interfaces:

Distributed data storage and analytics REC-59 (through Data
Handler - REC-73), Optimization Toolkit for Refurbishment
and Remanufacturing (REC-62)

Functional
Requirements:

REC-3, REC-7, REC-8, REC-9, REC-10, REC-11, REC-35, REC-
36

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

Raw data
Short description: -
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,

Fault diagnosis and predictive mantainance predictions
Short description: -
Data type: dictionary/list
Data format: JSON
Value range & frequency: -

http://jira-projects.iti.gr:8080/browse/REC-61
http://jira-projects.iti.gr:8080/browse/REC-66
http://jira-projects.iti.gr:8080/browse/REC-67
http://jira-projects.iti.gr:8080/browse/REC-66
http://jira-projects.iti.gr:8080/browse/REC-67
http://jira-projects.iti.gr:8080/browse/REC-72
http://jira-projects.iti.gr:8080/browse/REC-61
http://jira-projects.iti.gr:8080/browse/REC-59
http://jira-projects.iti.gr:8080/browse/REC-73
http://jira-projects.iti.gr:8080/browse/REC-72
http://jira-projects.iti.gr:8080/browse/REC-59
http://jira-projects.iti.gr:8080/browse/REC-73
http://jira-projects.iti.gr:8080/browse/REC-62
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-9
http://jira-projects.iti.gr:8080/browse/REC-10
http://jira-projects.iti.gr:8080/browse/REC-11
http://jira-projects.iti.gr:8080/browse/REC-35
http://jira-projects.iti.gr:8080/browse/REC-36
http://jira-projects.iti.gr:8080/browse/REC-36

The RECLAIM architecture specification (M10)

53

destination): Data sent to: database

Software
Requirements /
Development
Language:

Java, OSGi, Docker

Status of the
development of the
component:

Partially Developed

3.1.8.3.3.1 Digital Twin for Simulation

Figure 16 - Digital Twin for Simulation component diagram

Table 12 - Filled-in software component template for the Digital Twin for Simulation

Component Type: Software

Functionality: This component is part of the Fault Diagnosis and Predictive
Maintenance Simulation Engine using Digital Twin to be
developed in T3.3 and building block 6. The ultimate goal is
to evaluate different maintenance scenarios and production
strategies by means of discrete simulation to reduce the
impact of maintenance activities on the performances of a
production system. It is composed by 2 main modules:
• Production data I/O manager that imports the production
sequence over a period of time from a legacy system
(Production scheduler) and converts it into a readable input
for the DDD simulation model component.

The RECLAIM architecture specification (M10)

54

• DDD simulation model that allows to create the simulation
model of a manufacturing shop floor. It receives as input:
o the defined maintenance plan over a period of time,
o the machine profile of each production resources to be
simulated (from T3.2),
o the machine failure probabilistic model as defined in the
Predictive Maintenance component developed in T3.3,
o the current shop floor status mainly in terms of WIP,
machine/tool utilization time from the last failure,
machine/resource availability, etc.
It is composed by 2 sub-component types:
o Process modules: to describe the production processes to
be simulated along with control logics, priority, MTBF,
MTTR, etc.
o Transport modules: to describe the material flow in the
shop floor along with the control logic, the routing rules
The digital twin for simulation provides, as output, a list of
KPIs, such as: average throughput of the shop floor, average
utilization of each resource, average lead time, average
WIP. Furthermore it can provide detailed simulation results
such as the utilization time of each resource over a period
of time, the duration of every failure happened during a
simulation run, the number of failures of each resources,
etc.

Input Connections &
Interfaces:

Digital Twin orchestrator (machinery profiles, production
plan, predictive maintenance model)

Output Connections
& Interfaces:

Digital Twin orchestrator (production KPIs: resource
saturation, productivity, production lead time,...)

Functional
Requirements:

REC-55

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. machinery profiles
Short description: Data about machinery capacity,
maintenance, performances, etc. for each resource in a
shop floor
Data type: -
Data format: -
Value range & frequency: -
Data received from: RECLAIM Repository
2. raw data
Short description: Data about current machines status
Data type: -

http://jira-projects.iti.gr:8080/browse/REC-55

The RECLAIM architecture specification (M10)

55

Data format: -
Value range & frequency: -
Data received from: RECLAIM Repository
3. Production plan
Short description: The production plan of a shop floor to be
simulated
Data type: -
Data format: -
Value range & frequency: -
Data received from: RECLAIM Repository
4. Predictive maintenance model
Short description: A model for each machine in the
simulation model
Data type: -
Data format: -
Value range & frequency: -
Data received from: -

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

1. KPIs visualization
Short description: Simulation results are shown to the end
user
Data type: -
Data format: -
Value range & frequency: -
Data sent to: end users
2. Simulation model and result saving
Short description: Simulation results are saved in the
repository
Data type: -
Data format: -
Value range & frequency: -
Data sent to: RECLAIM Repository

Software
Requirements /
Development
Language:

Java

Status of the
development of the
component:

Partially Developed

3.1.8.3.3.2 Anomaly Detection

Table 13 - Filled-in software component template for the Anomaly Detection

Component Type: Software

The RECLAIM architecture specification (M10)

56

Functionality: Techniques to find abnormal behaviors that deviate from
normal process conditions to raise warnings and find root
causes for the problem. This algorithm will be feedback
directly with sensor data (when possible and pertinent) or
transformed data from the pilots in order to be more
interpretable. Based on the analysis of data streaming, the
algorithm should indicate if a warning should be sent to the
key personnel to check the system. This algorithm is the
first frontline of analysis from shop-floor components in
order to understand machine's health. There might be some
overlap with the ICE health index from T3.2, however
different approaches might / will be used but further
alignment is required.

Input Connections &
Interfaces:

RECLAIM Repository; Fault Diagnosis and Predictive
Maintenance Simulation Engine using Digital Twin (T3.3,
LINKS)

Output Connections
& Interfaces:

Fault Diagnosis and Predictive Maintenance Simulation
Engine using Digital Twin (T3.3, LINKS)

Functional
Requirements:

REC-3, REC-7, REC-8

Non-Functional
Requirements:

REC-12

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

Normal process behavior
Short description: normal process behavior in order to train
an algorithm with such a pattern and further classification
of data into normal / abnormal
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Data classification
Short description: classification into normal / abnormal data
Data type: -
Data format: -
Value range & frequency: -
Data sent to: end users

Software
Requirements /
Development
Language:

Python 3.6

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-12

The RECLAIM architecture specification (M10)

57

Communications: RECLAIM Repository

Status of the
development of the
component:

Partially Developed

3.1.8.3.3.3 Predictive maintenance

Table 14 - Filled-in software component template for the Predictive Maintenance

Component Type: Software

Functionality: The predictive maintenance approach is composed of 1) a
component failure prediction in the future (e.g. 48h); 2)
Optimization module for scheduling future maintenance
actions based on the existing scheduling. The main idea of
this method is to predict what kind of maintenance will be
required based on the failing component in the machine.
With this, it will be possible to understand what changes
need to be done in order to compensate the downtime of
the failing machine.

Input Connections &
Interfaces:

RECLAIM Repository; Fault Diagnosis and Predictive
Maintenance Simulation Engine using Digital Twin (T3.3,
LINKS)

Output Connections
& Interfaces:

Optimization Toolkit for Refurbishment and
Remanufacturing Planning (T3.4, FCY)

Functional
Requirements:

REC-3, REC-7, REC-8

Non-Functional
Requirements:

REC-12

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. process data from normal & failure behaviors
Short description: process data for both normal and failure
behavior in order to train machine learning algorithms to
recognize those
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database
2. failure components
Short description: components that failed during the
process for correlation with process data
Data type: dictionary/list

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-12

The RECLAIM architecture specification (M10)

58

Data format: JSON
Value range & frequency: -
Data received from: database
3. existing maintenance activities
Short description: scheduling of the maintenance activities
for further scheduling optimization in case of component
failure
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Optimized maintenance schedule
Short description: new proposal for maintenance activities
towards cost minimization
Data type: -
Data format: -
Value range & frequency: -
Data sent to: end users

Software
Requirements /
Development
Language:

Python 3.6

Communications: RECLAIM Repository

Status of the
development of the
component:

Partially Developed

The RECLAIM architecture specification (M10)

59

3.1.8.3.4 Optimization Toolkit for Refurbishment and Remanufacturing Planning

Figure 17 - Optimization Toolkit for Refurbishment and Remanufacturing Planning component diagram

Table 15 - Filled-in software component template for the Optimization Toolkit for Refurbishment and
Remanufacturing Planning

Component Type: Software

Functionality: The Optimization Toolkit for Refurbishment and
Remanufacturing Planning (T3.4, building block 7) aims to
support planning optimization through multi-variable
monitoring of the machines' operational parameters where
the effects of variable changes will be possible to determine
and combine learning methodologies for model-based plat-
site/shop-floor control. Based on the multimodal data
provided by the IoT infrastructure, new approaches of real-
time production planning optimization algorithms will be
developed to apply proven optimization methodologies to
deliver measurable performance improvements. Also, this
monitoring takes into consideration the data collected from
the sensors network (Building Block 1), the machine
profiles, production processes, and previous predictive
maintenance simulations (Building Block 6).
This toolkit is composed of three different blocks: State and
Failure Identification, Decision Making, and Process Plan

The RECLAIM architecture specification (M10)

60

Optimization. The first block intends to identify the current
state of the machine and characterize it according to its
state and impact on the machine. This block will receive
the trigger of a predicted failure from Digital Twin (T3.3)
and will interpreter according to it within the Machine
Identification module.
The Decision-Making block receives the Severity Range from
the previous block and evaluates its impact on the machine
operation and performance. With the addition of the
machinery profile, this block will propose and characterize
different operations to the machine. Four different
operations can be returned: "Machine OK" if the machine
doesn't need any optimization, "Refurbishment",
"Remanufacturing" or "Production Line Modification"
according to the more efficient solution for the machine
optimization.
The final block will associate the proposed solution to the
machine process plan and life cycle cost (received from
Cost Framework), and generate the Process Planning
according to it. It is expected that this plan considers all
the different options and chooses the optimized solution
according to machine performance and production. The
proposed plan can be validated with simulation engines.
Besides, a machine calibration proposal should be reported
as a suggestion to parameter change.

Input Connections &
Interfaces:

RECLAIM/Pilot Repository (Digital Retrofitting API,
Machinery Production Processes, and Machinery Operational
Profiling), Fault Diagnosis Engine (Predict Maintenance
Simulations), Cost Modelling Framework (Life cycle cost of
the machine), and Digital Twin Orchestrator (Simulated
Plan)

Output Connections
& Interfaces:

RECLAIM/Pilot Repository (Machine Process Plan and
Machine Calibration Plan), Cost Modelling Framework
(Optimized Plan), and Digital Twin Orchestrator (Optimized
plan)

Functional
Requirements:

REC-31, REC-32, REC-33, REC-34, REC-3, REC-4, REC-7, REC-
8, REC-9, REC-10

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. Shop-floor sensors data (historic and real-time)
(RECLAIM/Pilot Repositories)
Short description: Time-series data with product
information from earlier and later dates. Important to
estimate some components by interpolation between values
(historical and real-time).
Data type: data frame with headers
Data format: CSV

http://jira-projects.iti.gr:8080/browse/REC-31
http://jira-projects.iti.gr:8080/browse/REC-32
http://jira-projects.iti.gr:8080/browse/REC-33
http://jira-projects.iti.gr:8080/browse/REC-34
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-4
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-9
http://jira-projects.iti.gr:8080/browse/REC-10

The RECLAIM architecture specification (M10)

61

Value range & frequency: dependent on time window
prediction
Data received from: database/file (Data Handler)
2. Machinery operational profiling and models
(RECLAIM/Pilot Repositories)
Short description: Time-series data with machinery
information relevant to create production patterns which
will be further used to distinguish normal from abnormal
states.
Data type: data frame with headers
Data format: CSV
Value range & frequency: dependent on time window
prediction
Data received from: database/file
3. Machinery production processes (RECLAIM/Pilot
Repositories)
Short description: Time-series data with machinery
production processes relevant to understand how the
different machines work and which failures have an impact
on production.
Data type: data frame with headers
Data format: CSV
Value range & frequency: 1 file per process
Data received from: database/file
4. Predictive Maintenance Simulations (Fault Diagnosis
Engine)
Short description: Failure forecasts considering a simulated
environment of the machines under analysis. The
component will validate its veracity and identify which fault
states are correctly identified.
Data type: data frame with headers
Data format: CSV
Value range & frequency: Anything
Data received from: database/file
5. Life Cycle Cost (Cost Modelling)
Short description: Life Cycle Cost for each machine and its
processes.
Data type: data frame with headers
Data format: CSV
Value range & frequency: 1 per machine
Data received from: database/file
6. default arguments
Short description: configuration file
Data type: object
Data format: INI
Value range & frequency: dependent on argument
Data received from: defaults folder
7. non-default arguments
Short description: changed default / other
Data type: object

The RECLAIM architecture specification (M10)

62

Data format: command-line options
Value range & frequency: dependent on argument
Data received from: user / Docker image

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

1. Machine Process Plan
Short description: Generated process plans regarding a
specific machine. These plans will be an optimized version
considering the possible alternatives, in order to obtain the
Best Solution in the next interaction.
Data type: data frame with headers
Data format: CSV
Value range & frequency: 1 plan per machine
Data sent to: RECLAIM/Pilot Repositories
2. Machine Calibration Plan
Short description: Generated machine calibration
suggestions according to product quality and parameter
updates to obtain a better performance.
Data type: data frame with headers
Data format: CSV
Value range & frequency: 1 plan per machine
Data sent to: RECLAIM/Pilot Repositories

Status of the
development of the
component:

To be developed from scratch

3.1.8.3.4.1 Algorithms for quality prediction and process parameter optimization

Table 16 - Filled-in software component template for the algorithms for quality prediction and process
parameter optimization

Component Type: Software

Functionality: Algorithms to predict the final product quality in a specific
machine based on the parameters used for the process.
These methods are based in data, where both parameters
and final quality should exist in order to train machine
learning models, both regression and classification.
Ultimately, based on the quality predictive model it is
possible to estimate future machine parameters if a new
product needs to be yielded.

Input Connections &
Interfaces:

RECLAIM Repository; Fault Diagnosis and Predictive
Maintenance Simulation Engine using Digital Twin (T3.3,
LINKS)

Output Connections Optimization Toolkit for Refurbishment and

The RECLAIM architecture specification (M10)

63

& Interfaces: Remanufacturing Planning (T3.4, FCY)

Functional
Requirements:

REC-3, REC-7, REC-8

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. machine parameters
Short description: machine parameters used in previous
processes
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database
2. product final quality / specifications
Short description: product final quality in previous processes
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database
3. target quality / specifications
Short description: final desired quality / specifications of
the new process to be made
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Optimized machine parameters
Short description: machine parameters to be used by the
operator for the new process
Data type: -
Data format: -
Value range & frequency: -
Data sent to: end users

Software
Requirements /
Development
Language:

Python 3.6

Communications: RECLAIM Repository

Status of the
development of the
component:

Partially Developed

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8

The RECLAIM architecture specification (M10)

64

3.1.8.3.5 Prognostic and Health Management Toolkit

Figure 18 - Prognostic and Health Management Toolkit component diagram

Table 17 - Filled-in software component template for the Prognostic and Health Management Toolkit

Component Type: Software

Functionality: The aim of this toolkit is the development of a
comprehensive framework for predictive and preventive
control and management. The framework will contain a
number of physical and virtual tools to be integrated for
diagnostics and prognostics in manufacturing in order to
provide a significant contribution on enhancing operations
and maintenance intelligence.

Exposed Services:
 - Degradation model service.
 - Machine Component Description Modeller

Private Services:
 - FWM Load Calculator
 - Web-UI
 - Web Service Data Provider
 - RECLAIM Orchestrator

Input Connections &
Interfaces:

RECLAIM Repository (Degradation Data, Load Data,
Machine/Component Description, Sensor/Process Data)

Output Connections
& Interfaces:

RECLAIM Repository (Degradation Data, Load Data,
Machine/Component Description, Sensor/Process Data)

Functional REC-23, REC-35, REC-37, REC-48, REC-49, REC-50, REC-51,

http://jira-projects.iti.gr:8080/browse/REC-23
http://jira-projects.iti.gr:8080/browse/REC-35
http://jira-projects.iti.gr:8080/browse/REC-37
http://jira-projects.iti.gr:8080/browse/REC-48
http://jira-projects.iti.gr:8080/browse/REC-49
http://jira-projects.iti.gr:8080/browse/REC-50
http://jira-projects.iti.gr:8080/browse/REC-51

The RECLAIM architecture specification (M10)

65

Requirements: REC-52

Non-Functional
Requirements:

REC-13, REC-36, REC-53, REC-54

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

machine part/component description, sensor/process data
useful for load calculation, load data, degradation data (see
data models in section A3.5 Data from the Prognostic and
Health Management Toolkit)

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

machine part/component description, sensor/process data
useful for load calculation, load data, degradation data (see
data models in section A3.5 Data from the Prognostic and
Health Management Toolkit)

Software
Requirements /
Development
Language:

Javascript / C++

Hardware
Requirements:

typical windows PC

Communications: Ethernet / OPC-UA to machine

Status of the
development of the
component:

To be developed from scratch

3.1.8.3.5.1 Degradation models

Table 18 - Filled-in software component template for the Degradation models

Component Type: Software

Functionality: Machine-learning-based models to model the degradation
patterns of certain components, and based on this,
calculate the KPIs to classify the machine's health. The key
difference between this technique and T2.5 is mainly on the
detail they will provide, being the T2.5 much more high-
level and only considering small aspects of the machine,
like MTBF and similar. This algorithm will take into account

http://jira-projects.iti.gr:8080/browse/REC-52
http://jira-projects.iti.gr:8080/browse/REC-13
http://jira-projects.iti.gr:8080/browse/REC-36
http://jira-projects.iti.gr:8080/browse/REC-53
http://jira-projects.iti.gr:8080/browse/REC-54

The RECLAIM architecture specification (M10)

66

different dimensions like 1) Machine Load; 2) Time and 3)
Sensor Data. Based on this, the proposed algorithm will
provide more insights into machine degradation than T2.5.
This method is very related with the one presented by HWH,
and we will work together with HWH on the implementation
and development of this method, both specifically for HWH
and generic for others to use.

Input Connections &
Interfaces:

RECLAIM service orchestrator / interface; Web Service data
provider; IoT Gateway with AI acceleration (T3.1, FINT);
RECLAIM Repository.

Output Connections
& Interfaces:

RECLAIM service orchestrator / interface; Web Service data
provider;

Functional
Requirements:

REC-3, REC-7, REC-8

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. process data
Short description: historical process data
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database
2. historical data of failures
Short description: list of annotated failures through time
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database
3. product quality
Short description: final quality of the product
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database
4. machine parameters used
Short description: historical machine parameters
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: database

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,

Prediction machine degradation
Short description: Models to predict different failures in the
future according to different processes and parameters used
Data type: -
Data format: -
Value range & frequency: -

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8

The RECLAIM architecture specification (M10)

67

destination): Data sent to: end users

Software
Requirements /
Development
Language:

Python 3.6

Communications: RECLAIM Repository

Status of the
development of the
component:

Partially Developed

3.1.8.3.6 Cost Modelling and Financial Analysis Toolkit

Figure 19 - Cost Modelling and Financial Analysis Toolkit component diagram

Table 19 - Filled-in software component template for the Cost Modelling and Financial Analysis Toolkit

Component Type: Software

Functionality: The component (cost model) will estimate the unit cost of
remanufacturing, refurbishment, repair strategies for

The RECLAIM architecture specification (M10)

68

equipment or their systems/sub-systems/components,
which will support the Decision Support Framework (T4.4).

Input Connections &
Interfaces:

Associated remanufacturing scenarios (e.g. what
equipment/sybsystem/component, what remanufacturing
strategy, when to remanufacture) from pilot partners
directly or via T4.4 DSF

Output Connections
& Interfaces:

Unit cost of a remanufacturing strategy.

Functional
Requirements:

REC-31

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

What equipment/sybsystem/component;

What remanufacturing strategy;

When cost needs to be estimated for.

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Unit cost of reamanufacturing, digit number

Software
Requirements /
Development
Language:

Excel, C

http://jira-projects.iti.gr:8080/browse/REC-31

The RECLAIM architecture specification (M10)

69

3.1.8.3.7 Integrated Decision Support Framework (DSF) for Refurbishment &
Remanufacturing Optimization - core component

Figure 20 - Integrated Decision Support Framework (DSF) for Refurbishment & Remanufacturing Optimization
component diagram

Table 20 - Filled-in software component template for the Integrated Decision Support Framework (DSF) for
Refurbishment & Remanufacturing Optimization

Component Type: Software

Functionality: Based on evaluation metrics to be defined, raw data from
T3.1, the output of data analysis components from T3.2-
T3.4, T4.2 and T4.3, as well as lifetime extension strategies
from T4.1, the DSF will infer 1) the most suitable
remanufacturing/refurbishment strategy, 2) the preferable
timeframe for the implementation of the strategy, 3) the
right components to be remanufactured/refurbished, 4) the
optimal design alternative. In contrast with the
Optimization Toolkit of T3.4, which performs only
operational optimization in single machines, T4.4 performs
operational optimization globally, i.e. in whole production
lines or set of machines of each pilot use case.

This component will probably use the REST protocol for
communicating both with the repository and the Cost
Modelling and Financial Analysis Toolkit.

Input Connections &
Interfaces:

RECLAIM Repository (Digital Retrofitting API), Cost Modelling
and Financial Analysis Toolkit

Output Connections RECLAIM Repository (Digital Retrofitting API), Cost Modelling

The RECLAIM architecture specification (M10)

70

& Interfaces: and Financial Analysis Toolkit

Functional
Requirements:

REC-3, REC-7, REC-8, REC-9, REC-10, REC-31, REC-50

Non-Functional
Requirements:

REC-12, REC-13, REC-14

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. raw data

Short description: sensorial/manual data

Data type: dictionary/list

Data format: JSON

Value range & frequency: -

Data received from: database

2. PHM predictions

Short description: -

Data type: dictionary/list

Data format: JSON

Value range & frequency: -

Data received from: database

3. Cost predictions

Short description: -

Data type: dictionary/list

Data format: JSON

Value range & frequency: -

Data received from: Cost Modelling and Financial Analysis
Toolkit

4. T3.4 optimization predictions

Short description: -

Data type: dictionary/list

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-9
http://jira-projects.iti.gr:8080/browse/REC-10
http://jira-projects.iti.gr:8080/browse/REC-31
http://jira-projects.iti.gr:8080/browse/REC-50
http://jira-projects.iti.gr:8080/browse/REC-12
http://jira-projects.iti.gr:8080/browse/REC-13
http://jira-projects.iti.gr:8080/browse/REC-14

The RECLAIM architecture specification (M10)

71

Data format: JSON

Value range & frequency: -

Data received from: database

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

1. Refurbishment/remanufacturing scenario
Short description: scenario for which the KPIs of this
component will be computed
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data sent to: Cost Modelling and Financial Analysis Toolkit
2. DSF predictions
Short description: -
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data sent to: database
3. Cost predictions
Short description: optimal cost and cost in case that no
action is taken
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data sent to: database

Software
Requirements /
Development
Language:

GitLab / Python 3.6

Status of the
development of the
component:

To be developed from scratch

The RECLAIM architecture specification (M10)

72

3.1.8.4 In-Situ Repair Data Analytics

Figure 21 - In-Situ Repair Data Analytics component diagram

Table 21 - Filled-in software component template for the In-Situ Repair Data Analytics

Component Type: Software

Functionality: This is the component corresponding to T5.2 and building
block 8. The exact role of it will depend on the pilot needs.
In any case, it will consist of algorithms and visual analytics.
One possible option is that a camera or laser sensor that
will be taking 2D or 3D data from the product is installed,
and an image processing algorithm (supervised or
unsupervised, depending on the presence or absence of
ground truth data respectively) will be comparing it with
the ideal form of the product and based on that will be
inferring (in the supervised case) what action should be
taken on the equipment producing it. Another probable
option is to use process data from machinery data collectors
as input and perform a signal processing algorithm (e.g.
Fourier analysis) to monitor the state of machine
components producing the products.

Input Connections &
Interfaces:

RECLAIM Repository (Digital Retrofitting API)

Output Connections
& Interfaces:

RECLAIM Repository (Digital Retrofitting API)

Functional
Requirements:

REC-3, REC-4, REC-7, REC-8, REC-9, REC-10, REC-24, REC-50

Non-Functional
Requirements:

REC-12, REC-13, REC-14

Input parameters
(attribute/parameter,

1. model input time series data (historical/real-time)
Short description: 3D data of the product, or process data

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-4
http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-9
http://jira-projects.iti.gr:8080/browse/REC-10
http://jira-projects.iti.gr:8080/browse/REC-24
http://jira-projects.iti.gr:8080/browse/REC-50
http://jira-projects.iti.gr:8080/browse/REC-12
http://jira-projects.iti.gr:8080/browse/REC-13
http://jira-projects.iti.gr:8080/browse/REC-14

The RECLAIM architecture specification (M10)

73

short description,
data type, data
format, value range
& frequency, origin):

Data type: dictionary / list / data frame of floats
Data format: JSON/CSV
Value range & frequency: anything
Data received from: database/file
2. model target time series data (historical/real-time)
Short description: event data (refurbishment etc.)
Data type: dictionary / list / data frame of floats
Data format: JSON/CSV
Value range & frequency: anything
Data received from: database/file
3. statistical / machine learning models
Short description: descriptive/predictive analytics
Data type: -
Data format: -
Value range & frequency: -
Data received from: models folder

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

1. statistical / machine learning models
Short description: descriptive/predictive analytics
Data type: -
Data format: -
Value range & frequency: -
Data sent to: models folder
2. predictions
Short description: descriptive/predictive/prescriptive
analytics
Data type: -
Data format: -
Value range & frequency: -
Data sent to: database/file

Status of the
development of the
component:

Partially Developed

The RECLAIM architecture specification (M10)

74

3.1.8.5 AR mechanisms

Figure 22 - AR mechanisms component diagram

Table 22 - Filled-in software component template for the AR mechanisms

Component Type: Software

Functionality: 1. Develop novel Localization Mechanism:
a) Research Inside-out 3D registration [based on Inertial
Measurement Unit (IMU) and Vision hybrid methods]
b) Research Outside-in 3D registration (based on
Bluetooth/WiFi/Zigbee etc. triangulation)
c) Implement hybrid indoor localization using above
methodologies
2. Develop novel AR Visualization Mechanism:
a) Implement head-mounted display (HMD) and Mobile
device-based AR Visualization pipeline
b) Integrate Indoors localization to AR 3D visualization
c) Implement real-time Localised 3D Annotation module
d) Research multimodal (gesture+voice) interaction
techniques
3. Integrate with Adaptive Sensorial Network: Use the ASN
to provide context-aware instructions and notifications
4. Integrate with DSF: Integrate DSF proposed solutions in
instructions and notifications

Input Connections & RECLAIM Repository (Digital Retrofitting API), AR devices

The RECLAIM architecture specification (M10)

75

Interfaces: (AR UI)

Output Connections
& Interfaces:

RECLAIM Repository (Digital Retrofitting API), AR devices
(AR UI)

Functional
Requirements:

REC-11, REC-15, REC-16, REC-17, REC-18, REC-19, REC-20,
REC-21, REC-22

Non-Functional
Requirements:

REC-12, REC-13, REC-14

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

1. machinery health data
Short description: -
Data type: -
Data format: -
Value range & frequency: -
Data received from: database
2. proposed actions / parts IDs (from DSF)
Short description: -
Data type: -
Data format: -
Value range & frequency: -
Data received from: database
3. network-based localization
Short description: -
Data type: -
Data format: -
Value range & frequency: -
Data received from: database
4. IMU & vision-based localization
Short description: IMU = Inertial Measurement Unit
Data type: -
Data format: -
Value range & frequency: -
Data received from: AR devices
5. input for gesture / speech recognition
Short description: -
Data type: -
Data format: -
Value range & frequency: -
Data received from: AR devices
6. gesture / speech recognition model
Short description: -
Data type: -
Data format: -
Value range & frequency: -
Data received from: database

Output parameters 1. textual recommendations

http://jira-projects.iti.gr:8080/browse/REC-11
http://jira-projects.iti.gr:8080/browse/REC-15
http://jira-projects.iti.gr:8080/browse/REC-16
http://jira-projects.iti.gr:8080/browse/REC-17
http://jira-projects.iti.gr:8080/browse/REC-18
http://jira-projects.iti.gr:8080/browse/REC-19
http://jira-projects.iti.gr:8080/browse/REC-20
http://jira-projects.iti.gr:8080/browse/REC-21
http://jira-projects.iti.gr:8080/browse/REC-22
http://jira-projects.iti.gr:8080/browse/REC-12
http://jira-projects.iti.gr:8080/browse/REC-13
http://jira-projects.iti.gr:8080/browse/REC-14

The RECLAIM architecture specification (M10)

76

(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

Short description: steps of optimal actions
Data type: -
Data format: -
Value range & frequency: -
Data sent to: end users
2. coordinates/orientation
Short description: coordinates/orientation of user &
components
Data type: 3D vectors of floats
Data format: JSON
Value range & frequency: |point|<105, |pose|<180
Data sent to: end users

Software
Requirements /
Development
Language:

Python, Keras, OpenCV, C#, Unity3D

Hardware
Requirements:

Modern computer with 16GB RAM and with a dedicated
graphics card, AR Smart Glasses with RGB-D camera and all
the necessary sensors

Status of the
development of the
component:

Partially Developed

3.1.8.6 Life Cycle Assessment

Figure 23 - Life Cycle Assessment component diagram

The RECLAIM architecture specification (M10)

77

Table 23 - Filled-in software component template for the Life Cycle Assessment

Component Type Web-based application

Functionality The main functionalities of the Life Cycle Assessment Tool
and its dashboard are the following:
• real-time assessment of the sustainability performances
• generation of machine use/refurbishment scenarios
• comparison of the identified scenarios
• visualization of assessment results

The tool is composed by the following subcomponents,
divided in three layers: repository, LCA platform, user
interface.

Repository layer
• Users DB: the component stores the data related to users
accessing the platform and makes them available to the
User Manager whenever necessary;
• Models DB: the component is deputed to store the models
of processes, production systems or supply chains designed
inside the platform. The Models DB exchanges data by
means of the Models IO to the related Model Managers
within the LCA platform.
• Sustainability indicators DB: this component is dedicated
to the storage of the KPIs and/or methodologies that are
used by the Sustainability Engine to calculate the
environmental, social and economic LCA impacts;
• Sustainability DB: this component is dedicated to the
integration and storage of external databases necessary for
LCA impacts computation.

LCA service platform
• User Manager: it manages the profiles of the users of the
platform
• Process Model Manager, Production Model Manager: these
two components are dedicated to the design and editing of
respectively production processes (e.g. milling) or group of
processes linked to produce a component (e.g. production
line);
• User IO, Models IO, Indicators IO, Importers: all these
component are dedicated to the dispatching to the other
internal components of the LCA platform of data coming
from external sources or DBs.
• Sustainability engine: it is the core of the platform and
stores the algorithms required to calculate the LCA impacts;
• Sustainability executor: it uses the defined
process/production models and the calculation logics
embedded in the sustainability engine to provide as output
the impacts of each analyzed production/process.

The RECLAIM architecture specification (M10)

78

User interface layer
• Process Editor: this is the interface that allows the user to
edit a new process;
• Production editor: this is the interface that allows the
user to interlink a set of processes in a production system;
• Sustainability executor GUI: this is the main user interface
that provides the visualization means of the calculations
performed by the platform. It is composed by two
subcomponents: production data entry and Sustainability
ind. Monitor. The first is dedicated to the data entry of
process/production specific data, required to feed the LCA
platform engine. The latter visualizes the sustainability
related performances of the system and allows the user to
work on the provided data.

Input Connections &
Interfaces

RECLAIM Repository

Output Connections
& Interfaces

Production Editor (ProductionAPI), Process Editor
(ProcessAPI), Sustainability Executor GUI (ExecutionAPI)

Functional
Requirements

REC-6, REC-38, REC-39, REC-40, REC-41, REC-42, REC-43,
REC-45, REC-46

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin)

1. raw data
Short description: Inventory data coming from machines
running. These could be already embedded into digital twin
models.
Data type: dictionary (impact key, impact value, unit of
measure)
Data format: JSON
Value range & frequency: Data ranges are different for each
impact, but already validated as coming from trusted data
source
Data received from: external, production machines
2. Life-Cycle predictions
Short description: -
Data type: -
Data format: JSON
Value range & frequency: -
Data received from: database
3. Digital Twin predictions
Short description: Predicted data coming from digital
models
Data type: -
Data format: JSON
Value range & frequency: -
Data received from: database

http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-38
http://jira-projects.iti.gr:8080/browse/REC-39
http://jira-projects.iti.gr:8080/browse/REC-40
http://jira-projects.iti.gr:8080/browse/REC-41
http://jira-projects.iti.gr:8080/browse/REC-42
http://jira-projects.iti.gr:8080/browse/REC-43
http://jira-projects.iti.gr:8080/browse/REC-45
http://jira-projects.iti.gr:8080/browse/REC-46

The RECLAIM architecture specification (M10)

79

4. Other data
Short description: Predicted data coming from optimization
models
Data type: -
Data format: JSON
Value range & frequency: -
Data received from: database

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination)

Visualized data
Short description: LCA Dashboard
Data type: -
Data format: -
Value range & frequency: -
Data sent to: end users

Software
Requirements /
Development
Language

Web based application (Spring framework for back-end and
HTML/CSS for front-end) developed by means of Java.

Hardware
Requirements

Server to host the docker image.

Communications Still to be defined, really dependent on the hosting server.

Status of the
development of the
component

Partially Developed

3.1.8.7 Users Interfaces for the Integrated Decision Support Framework, the In-
Situ Repair Data Analytics and the AR mechanisms

The component diagram below shows all envisioned Users Interfaces.

The RECLAIM architecture specification (M10)

80

Figure 24 - Users Interfaces component diagram

The template below refers only to the UIs for the DSF core, the In-Situ Repair Data
Analytics and the AR mechanisms. The others have been described previously in the
templates of the respective services/frameworks.

Table 24 - Filled-in software component template for the Users Interfaces for the DSF core, the In-Situ Repair
Data Analytics and the AR mechanisms

Component Type: Software

Functionality: This component consists of the visualization panels of the
RECLAIM platform corresponding to the output of the
Decision Support Framework, the In-situ Repair Data
Analytics Toolkit and the AR mechanisms, and will appear
on relevant hardware (AR devices for AR mechanisms, and
usually personal computers for the rest). The component
will also allow the end users to provide manual input for the
algorithms of the DSF and the In-situ Repair Data Analytics
using the Common uploader UI, under the holistic data
model supported by the Data Handler.

The visualization provided by these UIs is going to be based
on Angular 8, which appears to have more capabilities than
Grafana, that had been used in previous projects.

These UIs will probably support Websocket or also MQTT
protocol, but this will also depend on the interfaces of the
interacting components.

Input Connections & RECLAIM Repository (RECLAIM 3rd party API), AR

The RECLAIM architecture specification (M10)

81

Interfaces: mechanisms (AR UI)

Output Connections
& Interfaces:

Data Handler with Cybersecurity, AR mechanisms

Functional
Requirements:

REC-3, REC-9, REC-10, REC-19, REC-24, REC-48, REC-49,
REC-51

Non-Functional
Requirements:

REC-12, REC-13, REC-14

Input parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency, origin):

Visualization data
Short description: -
Data type: dictionary/list
Data format: JSON
Value range & frequency: -
Data received from: RECLAIM Repository, AR mechanisms

Output parameters
(attribute/parameter,
short description,
data type, data
format, value range
& frequency,
destination):

1. manual data for Decision Support Framework and In-Situ
Repair Data Analytics
Short description: events / specifications / functionalities /
experts' estimations / market or business needs / financial
knowledge / all possible refurbishment & remanufacturing
steps etc.
Data type: files
Data format: JSON/CSV/XLSX/TXT/XML
Value range & frequency: -
Data sent to: RECLAIM Repository
2. input for gesture/speech recognition, IMU & Vision-based
localization
Short description: -
Data type: -
Data format: -
Value range & frequency: -
Data sent to: AR mechanisms

Software
Requirements /
Development
Language:

Docker, Angular, Node.js, Apache server / HTML,
JavaScript, Python, Java

Hardware
Requirements:

computer screens, mobile phones, tablets, AR glasses

Status of the
development of the
component:

To be developed from scratch

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-9
http://jira-projects.iti.gr:8080/browse/REC-10
http://jira-projects.iti.gr:8080/browse/REC-19
http://jira-projects.iti.gr:8080/browse/REC-24
http://jira-projects.iti.gr:8080/browse/REC-48
http://jira-projects.iti.gr:8080/browse/REC-49
http://jira-projects.iti.gr:8080/browse/REC-51
http://jira-projects.iti.gr:8080/browse/REC-12
http://jira-projects.iti.gr:8080/browse/REC-13
http://jira-projects.iti.gr:8080/browse/REC-14

The RECLAIM architecture specification (M10)

82

3.1.9 Common information model

As shown by the information view diagram and by the component diagrams of the
previous subsections, many components send data to a repository. In case of the
RECLAIM Repository, there will be a subcomponent, named “Data Handler with
Cybersecurity”, which will transform the data into a common format (“common
information model”, or, in other words, “holistic data model”) before sending
them to the RECLAIM Repository database (Distributed Data Storage and Analytics)
for storage. In order that the common information model (CIM) is created, it was
asked by owners of components which send data to the RECLAIM Repository to
provide the format of the output of their component as a JSON3 file. These
individual data models may be found in Annex 3: Individual data models.

The CIM created for RECLAIM was based on the OGC SensorThings standard of the
Open Geospatial Consortium (OGC) (OGC, 2017), which is one of the data modelling
standards used generally in manufacturing and adopted by a recent manufacturing-
related EU project (COMPOSITION D3.3, 10/2018). The data are defined in JSON
format and an associated object-oriented UML class diagram is provided (OGC
SensorThings API Documentation, n.d.). However, the original OGC SensorThings
standard was slightly modified in order to fit more the needs of RECLAIM, taking
into account the individual data models.

The current version of RECLAIM CIM is shown below.

Figure 25 - UML class diagram of RECLAIM common information model

This CIM will be subject to updates until the next update of this deliverable.

All classes and attributes of this figure also exist in the OGC SensorThings data
model and thus they have already been explained by OGC (OGC SensorThings API
Documentation, n.d.). On the other hand, some attributes of the OGC SensorThings

3 The JSON format (as well as XML) is commonly used for data exchange (COMPOSITION D3.3,
10/2018). From the experience of CERTH from previous projects, JSON proved to be more user-
friendly compared to XML.

The RECLAIM architecture specification (M10)

83

data model were not considered as useful for RECLAIM, so they were omitted. The
values of some attributes have been particularized here, so that their potentially
necessary content for RECLAIM is clarified. Anyway, all classes and attributes are
explained below, so that their specific meaning for RECLAIM is shown:

 Thing: This class defines the source of data. It contains the following

attributes:

o name: information about the owner of the component that produces

the associated data (componentOwnerName), the name of the

component (componentName), the name of the pilot organization the

data are associated with (pilotName), as well as the pilot use case

name (useCaseName)

o description: other potential textual details about this class

 Location: This optional class specifies the pilot location. It contains the

following attributes:

o name: name of this class

o description: other potential textual details about this class

o location: the latitude (pilotLatitude) and longitude (pilotLongitude) of

the pilot premises where the associated data are collected

 HistoricalLocation: This optional class provides the following attribute:

o time: time of the current (i.e., last known) or a potentially previous

location of a pilot

 Datastream: This class represents a time series of a particular variable, the

measurements of which are produced by the same Thing. It contains the

following attributes:

o name: name of this class

o description: other potential textual details about this class

o unitOfMeasurement: unit of measurement of the measured values; at

least the symbol of the unit of measurement must be specified

 Sensor: This class represents an instrument that observes a property or

phenomenon in order to produce an estimate of its value, as in the

SensorThings API. It contains the following attributes:

o name: name of this class

o description: other potential textual details about this class

o metadata: the sensor ID (string), type (string between

“GenericSensor” and “VisionSensor”) and position (string), as they

have been defined in the individual data models for the ASN sensor

and the Machine Vision System (section A3.1 Data from/to the

Adaptive Sensorial Network)

 ObservedProperty: This class defines the variable measured. It contains the

following attributes:

o name: name of this class

o definition: definition of the variable provided in a URI link

o description: other potential textual details about this class

The RECLAIM architecture specification (M10)

84

 Observation: This class contains a measurement of a variable. It contains the

following attributes:

o phenomenonTime: the time corresponding to the measured value

o resultTime: the time when this measurement is communicated from

the sensor to another component

o result: the value of the measurement

 FeatureOfInterest: This class contains the characteristics and other

information accompanying a measurement:

o name: name of this class

o description: other potential textual details about this class

o feature: dictionary the keys and values of which are the attribute

names and their values respectively; the currently envisioned

attributes correspond to the information included in the individual

data models that cannot be described in any other class of the data

model standard (e.g. machine, decision, message, arguments)

Compared with the OGC SensorThings data model, the multiplicities of the
associations are almost the same. In fact, the only change is that in the RECLAIM
CIM a datastream does not necessarily have to be associated with a sensor, because
RECLAIM data are generated not only by sensors, but also by services/frameworks
and the users themselves.

Based on the input received in the component templates, the high-level diagram
below summarizes the main communication protocols that are going to be used.
This figure is going to be elaborated in the 2nd iteration of T2.3.

The RECLAIM architecture specification (M10)

85

Figure 26 - High-level view of communication protocols to be used in RECLAIM

3.2 Deployment view

The deployment view focuses on aspects of the system which are important after it
has been tested and is ready to be used live. By this view, the physical
environment in which the system is intended to run is defined, including:

 Required hardware environment (such as processing nodes and network
interconnections)

 Technical environment requirements for every node

 Mapping software elements to the runtime environment

 Third-party software requirements

 Network requirements

The deployment view needs to describe the required deployment environment of
the RECLAIM platform, which depends on the pilot areas and their topology. This

The RECLAIM architecture specification (M10)

86

subsection provides a first overview, covering the known hardware requirements of
the software modules and the used tools.

The partners who filled in the hardware templates mentioned above contributed to
the following deployment view diagram. The corresponding hardware is shown
inside the Adaptive Sensorial Network Infrastructure, whereas the main software
components correspond to the execution environments of the upper part of the
diagram. This diagram is expected to be updated and elaborated in the 2nd version
of the architecture, including detailed information about the “Other hardware” to
be specified between pilots and hardware providers, and providing more accurate
information about the necessary number of devices that will host the RECLAIM
components.

The RECLAIM architecture specification (M9)

87

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N°869884

Figure 27 - RECLAIM deployment view

The RECLAIM architecture specification (M9)

88

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N°869884

3.3 Development view

A considerable amount of planning and design of the development environment is
often required to support the design and build of software for complex systems.
Some aspects to consider include code structure and dependencies, build and
configuration management of deliverables, system-wide design constraints, and
system-wide standards to ensure technical integrity. It is the role of the
Development view to address these aspects of the system development process.

The remainder of this subsection presents the initial considerations for
deployment, whereas related UML diagrams are going to be prepared for a future
iteration of the architecture activities.

3.3.1 Code organization

Code organization is a very crucial part in the development stage of the
components. Git is an open-source distributed version-control system and is widely
used because it offers various tools for software development and other version
control tasks.

The main features that make Git so successful are:

● Allows the use of multiple local branches that can be entirely independent
of each other.

● Huge speed advantage, as all operations are performed locally.

● Git is distributed, meaning every user has a backup of the main server, thus
offering multiple different workflows that can be implemented.

● A staging area makes it possible to choose the modifications of the files to
be committed.

● Cryptographic integrity of every bit of data committed.

The source code of all the components is managed in a Git repository server. It is
preferable for every change in the code to be committed immediately, so that
other developers work on the latest versions of the components.

Regarding code quality, all developers should adhere to coding guidelines and
conventions in order to improve the readability and maintenance of the code. Of

The RECLAIM architecture specification (M10)

89

course, each programming language has its own coding standards and style guides.
To automate this process various tools will be utilized, such as Checkstyle for Java
and Pylint for Python.

3.3.2 Continuous Integration and Deployment

The definition of Continuous Integration refers to the development practice, where
developers integrate code into a shared repository frequently. Automated build
and automated tests can then detect errors quickly and locate them more easily.
Additionally, Continuous Delivery and Continuous Deployment are common
practices used alongside Continuous Integration. They refer to keeping the
applications deployable at any point and even pushing them into production
automatically.

Some of the benefits of Continuous Integration and Deployment are:

● Reduced time and effort for integrations of different code changes.

● Quick feedback mechanism on every change.

● Earlier and quicker detection of errors.

● Reduced manual testing effort.

● Prevents divergence in different branches as they are integrated regularly.

3.3.3 Tools

Gitlab is chosen as the platform for source code management (SCM), continuous
integration (CI), continuous deployment (CD) and monitoring. Gitlab SCM comes
with a web-based Git-repository manager, providing wiki, issue-tracking and
grouping and sub-grouping or repositories. A crucial benefit of using Gitlab is that it
integrates CI services by default in all projects. A CI/CD pipeline can be configured
to run in every commit or push to a particular branch. In this way, the need of
integration of different tools and pipelines is tackled, as the entire CI pipeline can
be configured in one simple script file.

A Gitlab infrastructure will be hosted in CERTH’s servers. Each component will be
managed in each own repository, by its respective developers. As there are
multiple categories of components, such as predictive functions, visualization and
deployment tools, all components will be placed inside their corresponding group
and sub-group. Developers will be granted permissions and access only to their own
repositories.

Docker is an open-source project that utilizes OS-level virtualization to deliver
software in packages called containers. These containers are portable, self-
sufficient, and isolated from each other. All containers are run by a single

The RECLAIM architecture specification (M10)

90

operating system kernel, thus using fewer resources than virtual machines.
Furthermore, they are designed to run on a wide range of platforms, including
Windows, Linux and Mac Desktops, Azure cloud services and Windows, Debian, and
Ubuntu servers.

By running the components in isolated containers, the management of the
configuration and dependencies of each component becomes very easy. Each
container represents a whole separate operating system, with its own software,
libraries and configuration installed inside. Moreover, Docker containers are very
lightweight and require few resources for their creation. Thus, the integration and
deployment of multiple different containerized components in a single host
machine bears no effect on the system.

Lastly, Docker provides continuous monitoring and logging of containers, by
utilizing various dedicated web management tools, such as Portainer. Depending on
its user’s permissions, Portainer allows to create, run, publish and remove
containers, build and delete Docker images and manage Docker volumes and
networks. As a result, it is a versatile tool for both the components developers and
the integration and deployment experts.

4. Conclusions

This was the 1st version of the deliverable of the RECLAIM project regarding the

architecture specification, submitted in M10 (7/2020). It provided the initial

considerations about the architectural viewpoints of the RECLAIM framework

(conceptual, communication, functional, deployment, development), as well as a

high-level illustrative consolidated view diagram. More especially, the information

view was accompanied by the common information model to be used for data

exchange with the RECLAIM Repository. Also, numerous system requirements and

some hardware specifications were defined in T2.3 and presented in this

deliverable.

There will be two revisions of this deliverable in months 20 (5/2021) and 30

(3/2022), as an outcome of the remaining two iterations of the architecture task

T2.3 respectively. Apart from updates in the content of this document, the next

revised version will include also the consolidated view instantiation per pilot,

detailed UML sequence diagrams and the context view derived from them, which

will link more clearly the RECLAIM architecture with the technical use cases.

The RECLAIM architecture specification (M10)

91

References

1471-2000 - IEEE Recommended Practice for Architectural Description for Software-
Intensive Systems. (2000, October 9). IEEE.

B. Schmidt-Belz, D. F. (1999). Scenario-based System Validation by Users. Human-
Computer Interaction - INTERACT. Edinburgh: Swindon: British Computer
Society.

COMPOSITION D3.3. (10/2018). Digital Factory Model II.
D2.1. (7/2020). Initial requirements specification.
D2.2. (7/2020). RECLAIM Use Cases Definition & Operational Requirements #1.
D2.4. (1/2022). Lessons Learned and updated requirements report.
D2.6. (3/2021). RECLAIM Use Cases Definition & Operational Requirements #2.
D2.7. (3/2022). RECLAIM Use Cases Definition & Operational Requirements #3.
ISO/IEC/IEEE 42010: Systems and Software Engineering - Architecture Description.

(2011, December 1). Retrieved from
http://cabibbo.dia.uniroma3.it/asw/altrui/iso-iec-ieee-42010-2011.pdf

N. Rozanski, E. W. (2012). Software systems architecture: working with
stakeholders using viewpoints and perspectives. books.google.com.

OGC. (2017). Open Geospatial Consortium. Retrieved from
http://www.opengeospatial.org

OGC SensorThings API Documentation. (n.d.). Retrieved from
http://developers.sensorup.com/docs

S. Robertson, J. R. (1999). Mastering the requirement process. London: ACM Press
Books.

Sommerville, I. (2011). Software Engeneering. Boston: Addison-Wesley.

Annex 1: System requirements list

The system requirements that have been created and successfully passed the
quality check follow below. These are the requirements which have been
mentioned as satisfied by the software components in the corresponding
templates. Only the requirement REC-47 is still open and is going to be assessed in
the 2nd iteration, when all requirements will be subject to potential updates,
whereas new requirements may be added as well.

Table 25 - Filled-in system requirement templates

[REC-1] The data scientist can use SQL-like queries for structured datasets.

Requirement
Type:

Functional

Reporter: CERTH

http://jira-projects.iti.gr:8080/browse/REC-1

The RECLAIM architecture specification (M10)

92

Implementation
Assignee:

ICE

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Distributed data storage and analytics (DRy)

Status: part of specification

Rationale: In order to avoid inefficient extract/transform/load (ETL)
operations over very large dataset, it should be possible to query
data without the need to load the data, create and maintain
schemas, or transform the data before they can be processed.
Query language should be based on well-established SQL
standard.

Source: MONSOON (relevant EU project)

Fit Criterion: The Distributed Database provides SQL-like interface for
structured datasets for "on place" querying in various data
formats.

[REC-3] The data scientist has access to a visualization of data stored in the
project’s repository.

Issue Links: Relates

relates to REC-5 Data originating in the production si...

relates to REC-35 Data are homogeneously stored in a ce...

relates to REC-37 Transformation of data for their deli...

relates to REC-5 Data originating in the production si...

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH, HWH, LINKS, SUPSI

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-35
http://jira-projects.iti.gr:8080/browse/REC-37
http://jira-projects.iti.gr:8080/browse/REC-5

The RECLAIM architecture specification (M10)

93

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

Algorithms for quality prediction and process parameter
optimization, Anomaly Detection, AR mechanisms, Cost Modelling
and Financial Analysis Toolkit, Data handler, Degradation models,
Digital Twin for simulation, Distributed data storage and analytics
(DRy), Fault Diagnosis and Predictive Maintenance Simulation
Engine using Digital Twin, In-Situ Repair Data Analytics,
Integrated Decision Support Framework (DSF) for Refurbishment
& Remanufacturing Optimization, Life cycle assessment + LCA
dashboard, Machine Operational Profiling, Optimization Toolkit
for Refurbishment and Remanufacturing Planning, Predictive
Maintenance, Prognostic and Health Management Toolkit,
Reliability Analysis Tool, Users Interfaces

Status: part of specification

Rationale: In order to get an overview of the raw and analyzed data in the
project’s repository, the data scientist must be able to visualize
them in an appropriate manner, such as a dashboard.

Source: MONSOON (relevant EU project)

Fit Criterion: Raw, predicted and evaluation data from RECLAIM Repository can
be vizualized.

Description: The leaders of tasks T2.5 (SUPSI), T3.3 (LINKS), T4.2 (HWH), T4.4
(CERTH), T5.2 (CERTH), T5.5 (CERTH) and T7.4 (SUPSI) will most
probably develop dedicated Graphical User Interfaces. CERTH
may visualize also the output of T3.2 (raw and analyzed data),
T3.4 and T4.3 through the GUI for T4.4, if there are no dedicated
GUIs for the aforementioned tasks. To be discussed among
partners.

[REC-4] The data scientist is able to serialize machine learning models.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ASTON, CERTH, FCY, FEUP, HWH, ICE, LINKS, SUPSI

http://jira-projects.iti.gr:8080/browse/REC-4

The RECLAIM architecture specification (M10)

94

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Algorithms for quality prediction and process parameter
optimization, Anomaly Detection, AR mechanisms, Cost Modelling
and Financial Analysis Toolkit, Degradation models, Fault
Diagnosis and Predictive Maintenance Simulation Engine using
Digital Twin, In-Situ Repair Data Analytics, Optimization Toolkit
for Refurbishment and Remanufacturing Planning, Predictive
Maintenance, Prognostic and Health Management Toolkit,
Reliability Analysis Tool

Status: part of specification

Rationale: Once trained, machine learning models must be serialized and
exported in order to be applied to life data from the shop floor.

Source: MONSOON (relevant EU project)

Fit Criterion: All trained machine learning models can be serialized and
exported to the working directory of the respective code.

Description: Each organization with data scientists developing machine
learning algorithms (T2.5, T3.2, T3.3, T4.2, T4.3, T5.2, T5.5) will
be responsible to implement this requirement for its algorithms.
Each machine learning model needs to be accessible for
execution only by the respective component. If one component
needs to execute a model of another component, it should call
that component, which will read the model by itself.

[REC-5] Data originating in the production sites must be able to be transferred
to RECLAIM Repository.

Issue Links: Relates

relates to REC-6 The data scientist must have access t...

relates to REC-3 The data scientist has access to a vi...

relates to REC-6 The data scientist must have access t...

relates to REC-35 Data are homogeneously stored in a ce...

relates to REC-37 Transformation of data for their deli...

http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-35
http://jira-projects.iti.gr:8080/browse/REC-37

The RECLAIM architecture specification (M10)

95

relates to REC-3 The data scientist has access to a vi...

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ADV, CERTH, CTCR, FCY, FEUP, FINT, FLUCHOS, GORENJE, HWH,
ICE, LINKS, PODIUM, TECNALIA, ZORLUTEKS

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

Adaptive Sensorial Network & Infrastructure for Digital
Retrofitting, Data handler, Distributed data storage and analytics
(DRy)

Status: part of specification

Rationale: In order to transfer the data from the production sites to the
project’s repository, it is mandatory that all necessary ports are
opened on production sites (pilots).

Source: MONSOON (relevant EU project)

Fit Criterion: The necessary network communication ports are open, data from
the plants are available in RECLAIM Repository.

[REC-6] The data scientist must have access to the data from the project’s
repository.

Issue Links: Relates

relates to REC-5 Data originating in the production si...

relates to REC-35 Data are homogeneously stored in a ce...

relates to REC-5 Data originating in the production si...

Requirement
Type:

Functional

Reporter: CERTH

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-35
http://jira-projects.iti.gr:8080/browse/REC-5

The RECLAIM architecture specification (M10)

96

Implementation
Assignee:

CERTH, ICE

Quality Check
Assignee:

ICE

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy)

Status: part of specification

Rationale: There must be access to the stored data from the project’s
repository in order to train the machine learning algorithms or
make other calculations.

Source: MONSOON (relevant EU project)

Fit Criterion: Access to the data from RECLAIM Repository is available.

Description: The data stored in ICE's database (DRy) will be transferred to the
Data handler, for which CERTH is responsible, and after
converted to the appropriate format they will be transferred to
the data analytics components of the RECLAIM platform.

The data scientist shall be able to browse the data stored in the
project's repository and, upon selection of data, these will be
transferred to the Data handler.

[REC-7] The administrator can manage the platform via an integrated web-user
management console.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH, FEUP, HWH, ICE, LINKS, SUPSI

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

Algorithms for quality prediction and process parameter
optimization, Anomaly Detection, AR mechanisms, Cost Modelling
and Financial Analysis Toolkit, Degradation models, Digital Twin
for simulation, Distributed data storage and analytics (DRy), Fault

http://jira-projects.iti.gr:8080/browse/REC-7
http://jira-projects.iti.gr:8080/browse/REC-7

The RECLAIM architecture specification (M10)

97

Diagnosis and Predictive Maintenance Simulation Engine using
Digital Twin, In-Situ Repair Data Analytics, Integrated Decision
Support Framework (DSF) for Refurbishment & Remanufacturing
Optimization, Life cycle assessment + LCA dashboard, Machine
Operational Profiling, Optimization Toolkit for Refurbishment and
Remanufacturing Planning, Predictive Maintenance, Prognostic
and Health Management Toolkit, Reliability Analysis Tool

Status: part of specification

Rationale: For system administrators, it is more convenient to manage the
whole platform "from one place" using the integrated
management console which provides overall view of all platform
services.

Source: MONSOON (relevant EU project)

Fit Criterion: The Management Tools provide integrated web-user management
console for whole platform.

Description: Analogous responsibilities as for REC-3 for the data analysis
components, ICE and FEUP are responsible for the RECLAIM
Repository, and Edge Device with Digital Twin integration and
data processing algorithms, respectively.

The resources, status, logs etc. will be shown for every service or
component separately.

The simplest way is to use Portainer
(https://www.portainer.io/), a common tool for Docker
administration and passive monitoring.

This requirement can be fulfilled either in the same server as the
one that the related services will use, or remotely in another
server.

The position of the management interface in the architecture
will depend on the way that the deployment will be done.

[REC-8] The administrator can use active monitoring of the project’s platform
services.

Requirement
Type:

Functional

Reporter: CERTH

http://jira-projects.iti.gr:8080/browse/REC-8
http://jira-projects.iti.gr:8080/browse/REC-8

The RECLAIM architecture specification (M10)

98

Implementation
Assignee:

CERTH, HWH, ICE, LINKS, SUPSI

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

Algorithms for quality prediction and process parameter
optimization, Anomaly Detection, AR mechanisms, Cost Modelling
and Financial Analysis Toolkit, Degradation models, Digital Twin
for simulation, Distributed data storage and analytics (DRy), Fault
Diagnosis and Predictive Maintenance Simulation Engine using
Digital Twin, In-Situ Repair Data Analytics, Integrated Decision
Support Framework (DSF) for Refurbishment & Remanufacturing
Optimization, Life cycle assessment + LCA dashboard, Machine
Operational Profiling, Optimization Toolkit for Refurbishment and
Remanufacturing Planning, Predictive Maintenance, Prognostic
and Health Management Toolkit

Status: part of specification

Rationale: Since the project’s platform consists of many services, it is
necessary to provide tools for monitoring of the whole
environment where the administrators will have detailed
information about the status of the services and environment.

Source: MONSOON (relevant EU project)

Fit Criterion: The Management Tools support active monitoring of all platform
services.

Description: Analogous responsibilities as for REC-3 for the data analysis
components, ICE will be responsible for the RECLAIM Repository.

[REC-9] The end user has the ability to edit dashboard panels.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH, HWH, LINKS, SUPSI

Quality Check
Assignee:

HWH

http://jira-projects.iti.gr:8080/browse/REC-9

The RECLAIM architecture specification (M10)

99

RECLAIM
Component(s):

Users Interfaces

Status: part of specification

Rationale: The end user should be able to edit dashboards in order to focus
on specific information displayed on them.

Source: MONSOON (relevant EU project)

Fit Criterion: The dashboards are editable. For example, the time range
visualized in a time series and the visible metric plots should be
configurable.

Description: Similar responsibilities as for REC-3.

[REC-10] Dashboards can be printed.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH, HWH, LINKS, SUPSI

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

Users Interfaces

Status: part of specification

Rationale: Exporting dashboards allows them to be preserved when
migrating or upgrading the data visualization service.

Source: MONSOON (relevant EU project)

Fit Criterion: Dashboards can be printed or exported.

Description: Similar responsibilities as for REC-3.

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-10
http://jira-projects.iti.gr:8080/browse/REC-3

The RECLAIM architecture specification (M10)

100

[REC-11] Ability for WiFi connection at any time.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ADV, CTCR, FEUP, FINT, FLUCHOS, GORENJE, HWH, ICE, LINKS,
PODIUM, TECNALIA, ZORLUTEKS

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

AR mechanisms, Data handler, Distributed data storage and
analytics (DRy), Fault Diagnosis and Predictive Maintenance
Simulation Engine using Digital Twin, In-Situ Repair Data
Analytics, Integrated Decision Support Framework (DSF) for
Refurbishment & Remanufacturing Optimization, Users Interfaces

Status: part of specification

Rationale: The raw data and data analytics are updated real-time, and the
end-user should often be immediately be informed about sudden
changes (e.g. anomalies).

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: The percentage of time that the RECLAIM components are
connected to WiFi.

Description: Each pilot is responsible for itself.

[REC-12] The dashboards of the RECLAIM Platform must provide a friendly user
interface.

Requirement
Type:

Non-Functional

Reporter: CERTH

Implementation
Assignee:

CERTH, HWH, LINKS, SUPSI

Quality Check HWH

http://jira-projects.iti.gr:8080/browse/REC-11
http://jira-projects.iti.gr:8080/browse/REC-12
http://jira-projects.iti.gr:8080/browse/REC-12

The RECLAIM architecture specification (M10)

101

Assignee:

RECLAIM
Component(s):

Users Interfaces

Status: part of specification

Rationale: Most end users do not have technical knowledge.

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: End users state through some questionnaire that they are
satisfied enough regarding the user-friendliness of the
dashboards.

Description: Similar responsibilities as for REC-3.

[REC-13] The Users Interfaces of the RECLAIM Platform must support multiple
languages.

Requirement
Type:

Non-Functional

Reporter: CERTH

Implementation
Assignee:

CERTH, HWH, LINKS, SUPSI

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

Users Interfaces

Status: part of specification

Rationale: Multiple pilots are involved in the project, and some end users
may not have good knowledge of English.

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: End users state through some questionnaire that they do not have
any language-related difficulties to understand the dashboards.

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-13
http://jira-projects.iti.gr:8080/browse/REC-13

The RECLAIM architecture specification (M10)

102

Description: Similar responsibilities as for REC-3.

[REC-14] The Users Interfaces of the RECLAIM Platform must include a main
page with a menu of its dashboards.

Requirement
Type:

Non-Functional

Reporter: CERTH

Implementation
Assignee:

CERTH, HWH, LINKS, SUPSI

Quality Check
Assignee:

HWH

RECLAIM
Component(s):

Users Interfaces

Status: part of specification

Rationale: The end users should have a wide view of RECLAIM platform.

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: The main page is in place.

Description: Similar responsibilities as for REC-3.

[REC-15] The AR mechanisms must provide information for every mapped
component of the equipment of interest.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH

Quality Check
Assignee:

SCM

http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-14
http://jira-projects.iti.gr:8080/browse/REC-14
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-15
http://jira-projects.iti.gr:8080/browse/REC-15

The RECLAIM architecture specification (M10)

103

RECLAIM
Component(s):

AR mechanisms

Status: part of specification

Rationale: This requirement is related to the purpose of the real-time 3D
annotation module of the AR mechanisms.

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: The AR mechanisms provide information for every mapped
component of the equipment of interest.

[REC-16] The AR mechanisms must be able to update information data of every
component.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH

Quality Check
Assignee:

SCM

RECLAIM
Component(s):

AR mechanisms

Status: part of specification

Rationale: The AR mechanisms are interactive.

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: The AR mechanisms are able to update information data of every
component.

[REC-17] The AR mechanisms must be able to register and annotate equipment
components that have not been recognized or registered.

http://jira-projects.iti.gr:8080/browse/REC-16
http://jira-projects.iti.gr:8080/browse/REC-16
http://jira-projects.iti.gr:8080/browse/REC-17
http://jira-projects.iti.gr:8080/browse/REC-17

The RECLAIM architecture specification (M10)

104

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH

Quality Check
Assignee:

SCM

RECLAIM
Component(s):

AR mechanisms

Status: part of specification

Rationale: The AR mechanisms must be as automatic as possible.

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: The percentage of registered and annotated components, based
on domain expert's ground truth information.

[REC-18] The AR mechanisms must be able to recognize equipment
components.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH

Quality Check
Assignee:

SCM

RECLAIM
Component(s):

AR mechanisms

Status: part of specification

Rationale: The AR mechanisms must be as automatic as possible.

http://jira-projects.iti.gr:8080/browse/REC-18
http://jira-projects.iti.gr:8080/browse/REC-18

The RECLAIM architecture specification (M10)

105

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: The percentage of recognized components, based on domain
expert's ground truth information.

[REC-19] The AR mechanisms must be able to exchange data with the RECLAIM
Repository and the Users Interfaces.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH

Quality Check
Assignee:

SCM

RECLAIM
Component(s):

AR mechanisms, Data handler, Users Interfaces

Status: part of specification

Rationale: The need for this requirement results directly from the
envisioned functionality of the AR mechanisms.

Source: Grant Agreement, documents about components and
requirements of a previous Augmented Reality toolkit developed
by CERTH.

Fit Criterion: The AR mechanisms are able to store the semantic 3D model, the
user input for annotation in RECLAIM Repository and use it in the
future, and the Digital Twin predictions can be read from
RECLAIM Repository.

[REC-20] The AR mechanisms must be able to receive data regarding all the
possible and the optimal refurbishment / remanufacturing steps, through the
Refurbishment & Remanufacturing Framework.

Requirement
Type:

Functional

http://jira-projects.iti.gr:8080/browse/REC-19
http://jira-projects.iti.gr:8080/browse/REC-19
http://jira-projects.iti.gr:8080/browse/REC-20
http://jira-projects.iti.gr:8080/browse/REC-20
http://jira-projects.iti.gr:8080/browse/REC-20

The RECLAIM architecture specification (M10)

106

Reporter: CERTH

Implementation
Assignee:

CERTH, HWH, SCM

Quality Check
Assignee:

SCM

RECLAIM
Component(s):

AR mechanisms

Status: part of specification

Rationale: These steps will enable the AR mechanisms to indicate the parts
to be refurbished or remanufactured and the corresponding
instructions to end users.

Source: Grant Agreement

Fit Criterion: The steps have been inserted in the software of the AR
mechanisms.

[REC-21] The AR mechanisms must be able to determine user's position and
orientation.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH

Quality Check
Assignee:

SCM

RECLAIM
Component(s):

AR mechanisms

Status: part of specification

Rationale: This requirement is related to the purpose of the Indoor
localization and 3D registration module of the AR mechanisms.

Source: Documents about components and requirements of a previous

http://jira-projects.iti.gr:8080/browse/REC-21
http://jira-projects.iti.gr:8080/browse/REC-21

The RECLAIM architecture specification (M10)

107

Augmented Reality toolkit developed by CERTH.

Fit Criterion: The error in the estimation of user's position and orientation,
based on ground truth information.

[REC-22] The AR mechanisms must be able to locate every recognized
characteristic of the equipment.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

CERTH

Quality Check
Assignee:

SCM

RECLAIM
Component(s):

AR mechanisms

Status: part of specification

Rationale: This requirement is related to the purpose of the Indoor
localization and 3D registration module of the AR mechanisms.

Source: Documents about components and requirements of a previous
Augmented Reality toolkit developed by CERTH.

Fit Criterion: The error in the estimation of the position of the characteristics,
based on ground truth information.

[REC-23] Streaming real-time data from a messaging service of RECLAIM
Repository to a distributed data processing framework of RECLAIM Repository.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ADV, CERTH, CTCR, FCY, FEUP, FINT, HWH, ICE, LINKS, TECNALIA

http://jira-projects.iti.gr:8080/browse/REC-22
http://jira-projects.iti.gr:8080/browse/REC-22
http://jira-projects.iti.gr:8080/browse/REC-23
http://jira-projects.iti.gr:8080/browse/REC-23

The RECLAIM architecture specification (M10)

108

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Adaptive Sensorial Network & Infrastructure for Digital
Retrofitting, Data handler, Distributed data storage and analytics
(DRy), IoT Gateway software stack, Prognostic and Health
Management Toolkit

Status: part of specification

Rationale: By integration of the Messaging Service and the Distributed Data
Processing framework, it will be possible to incrementally update
or validate predictive models or apply them on new operational
data directly on the project’s platform in real time.

Source: MONSOON (related EU project)

Fit Criterion: The Messaging Service of RECLAIM Repository supports
programming interface for streaming real-time data directly to
the Distributed Data Processing framework.

[REC-24] Support for MQTT protocol.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ADV, CERTH, CTCR, FCY, FEUP, FINT, HWH, ICE, LINKS, TECNALIA

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Adaptive Sensorial Network & Infrastructure for Digital
Retrofitting, Data handler, Distributed data storage and analytics
(DRy), IoT Gateway software stack

Status: part of specification

Rationale: Message Queue Telemetry Transport (MQTT) protocol is one of
the most adopted standards for IoT communication. The platform
should support direct streaming of data from the IoT
environment.

http://jira-projects.iti.gr:8080/browse/REC-24

The RECLAIM architecture specification (M10)

109

Source: MONSOON (relevant EU project)

Fit Criterion: Support for MQTT protocol is provided.

[REC-26] Support for queries over big data file formats.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ICE

Quality Check
Assignee:

ICE

RECLAIM
Component(s):

Distributed data storage and analytics (DRy)

Status: part of specification

Rationale: Big data file formats are especially designed for efficient storage
and query of very large data sets.

Source: MONSOON (relevant EU project)

Fit Criterion: The Distributed data storage and analytics component supports
direct query over big data file formats.

[REC-27] Support for batch processing of large data sets.

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ICE

Quality Check
Assignee:

ICE

http://jira-projects.iti.gr:8080/browse/REC-26
http://jira-projects.iti.gr:8080/browse/REC-27

The RECLAIM architecture specification (M10)

110

RECLAIM
Component(s):

Distributed data storage and analytics (DRy)

Status: part of specification

Rationale: Since historical data can be stored in very large data sets, where
the size of the data exceed the size of the memory of common
server configuration (i.e. more than 512GB - 1TB), it is necessary
to support distributed computing on multiple servers.

Source: MONSOON (related EU project)

Fit Criterion: The Distributed Data Processing Framework is able to process
very large data sets.

[REC-31] Define the optimal time to carry out the suggested operation
(refurbishment/remanufacturing) for each machine.

Requirement
Type:

Functional

Reporter: FCY

Implementation
Assignee:

FCY

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Optimization Toolkit for Refurbishment and Remanufacturing
Planning

Status: part of specification

Rationale: The system should provide optimal time to carry out the
suggested operation (refurbishment, remanufacturing) for each
machine, in real-time, in order to make actions about machine
lifecycle. In addition to the solution, an understandable rational
should be provided.

Source: RECLAIM Documentation

Fit Criterion: Real-time machine optimal time to carry out
refurbishment/remanufacturing data sent to RECLAIM Repository.

http://jira-projects.iti.gr:8080/browse/REC-31
http://jira-projects.iti.gr:8080/browse/REC-31

The RECLAIM architecture specification (M10)

111

[REC-32] The Optimization Toolkit models should support real-time
calibration/fine-tuning.

Requirement
Type:

Functional

Reporter: FCY

Implementation
Assignee:

FCY

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Optimization Toolkit for Refurbishment and Remanufacturing
Planning

Status: part of specification

Rationale: The optimization models for each machine must support
calibration/fine-tuning in real time, using sensorial network
information (T3.1)

Source: RECLAIM Documentation

Fit Criterion: Real-time fine-tuning optimization data sent to RECLAIM
Repository.

[REC-33] The Optimization Toolkit should integrate machine prediction failures
and severity range patterns classifications.

Requirement
Type:

Functional

Reporter: FCY

Implementation
Assignee:

FCY

Quality Check
Assignee:

LINKS

RECLAIM Optimization Toolkit for Refurbishment and Remanufacturing

http://jira-projects.iti.gr:8080/browse/REC-32
http://jira-projects.iti.gr:8080/browse/REC-32
http://jira-projects.iti.gr:8080/browse/REC-33
http://jira-projects.iti.gr:8080/browse/REC-33

The RECLAIM architecture specification (M10)

112

Component(s): Planning

Status: part of specification

Rationale: The system must integrate the machine predictions for
failures/malfunctions and severity range patterns classifications
from Digital Twin (T3.3).

Source: RECLAIM Documentation

Fit Criterion: Full integration of predictions and classifications

[REC-34] Integrate different machinery data and propose solutions for different
severity ranges.

Requirement
Type:

Functional

Reporter: FCY

Implementation
Assignee:

FCY

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Optimization Toolkit for Refurbishment and Remanufacturing
Planning

Status: part of specification

Rationale: The toolkit should integrate real-time data (T3.1), machinery and
processes profile (T3.2), and predictive maintenance simulations
related to a fault analysis (T3.3), in order to generate the
Optimized Process Plan according to the severity range for the
machine. Also, the proposed plan should be simulated and
validated in the Digital Twin.

Source: RECLAIM Documentation

Fit Criterion: Full integration of different machinery data and proposed
solutions for each severity range.

http://jira-projects.iti.gr:8080/browse/REC-34
http://jira-projects.iti.gr:8080/browse/REC-34

The RECLAIM architecture specification (M10)

113

[REC-35] Data are homogeneously stored in a central or distributed database.

Issue Links: Relates

relates to REC-6 The data scientist must have access t...

relates to REC-37 Transformation of data for their deli...

relates to REC-3 The data scientist has access to a vi...

relates to REC-5 Data originating in the production si...

Requirement
Type:

Functional

Reporter: LINKS

Implementation
Assignee:

ASTON, CERTH, CTCR, FLUCHOS, GORENJE, ICE, LINKS, PODIUM,
ROBOTEH, SUPSI, TTS, ZORLUTEKS

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Adaptive Sensorial Network & Infrastructure for Digital
Retrofitting, Data handler, Distributed data storage and analytics
(DRy)

Status: part of specification

Rationale: In order to have a fast and easy access to data, data should be
stored in the db using a common data model among the different
sources and pilots.

Source: MONSOON (relevant EU project)

Fit Criterion: The Distributed Database contains homogeneous data.

[REC-36] Clear description of data

Requirement
Type:

Non-Functional

Reporter: LINKS

Implementation ADV, ASTON, CERTH, CTCR, ESCI, FCY, FEUP, FINT, FLUCHOS,

http://jira-projects.iti.gr:8080/browse/REC-35
http://jira-projects.iti.gr:8080/browse/REC-6
http://jira-projects.iti.gr:8080/browse/REC-37
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-36

The RECLAIM architecture specification (M10)

114

Assignee: GORENJE, HWH, ICE, LINKS, PODIUM, ROBOTEH, SCM, SEZ, SUPSI,
TECNALIA, TTS, ZORLUTEKS

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Distributed data storage and analytics (DRy)

Status: under implementation

Rationale: Data should have a clear description and association with the
process

Source: MONSOON (relevant EU project)

Fit Criterion: Data documentation is clear

[REC-37] Transformation of data for their delivery from the RECLAIM
Repository database to the Users Interfaces.

Issue Links: Relates

relates to REC-3 The data scientist has access to a vi...

relates to REC-5 Data originating in the production si...

relates to REC-35 Data are homogeneously stored in a ce...

Requirement
Type:

Functional

Reporter: CERTH

Implementation
Assignee:

ASTON, CERTH, CTCR, FLUCHOS, GORENJE, ICE, LINKS, PODIUM,
ROBOTEH, SUPSI, TTS, ZORLUTEKS

Quality Check
Assignee:

ICE

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Users
Interfaces

Status: part of specification

http://jira-projects.iti.gr:8080/browse/REC-37
http://jira-projects.iti.gr:8080/browse/REC-37
http://jira-projects.iti.gr:8080/browse/REC-3
http://jira-projects.iti.gr:8080/browse/REC-5
http://jira-projects.iti.gr:8080/browse/REC-35

The RECLAIM architecture specification (M10)

115

Rationale: Raw data and algorithmic outputs will have a holistic format in
the RECLAIM Repository database, but they will need to be
transformed to a format acceptable by each pilot's users
interfaces.

Source: RECLAIM Grant Agreement

Fit Criterion: Desired data are properly depicted in the users interfaces.

Description: CERTH will lead the transformation of visualization data from the
database (DRy) to Users Interfaces through the Data Handler.

[REC-38] Process modelling

Issue Links: Relates

relates to REC-39 Machine modelling

relates to REC-40 Impacts computation

relates to REC-43 LCA scenarios comparison

relates to REC-46 LCA service providing

Requirement
Type:

Functional

Reporter: SUPSI

Implementation
Assignee:

SUPSI

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard

Status: part of specification

Rationale: The LCA tool has to model the machine(s) middle of life in
analysis.

Source: MANU-SQUARE (H2020 project)

http://jira-projects.iti.gr:8080/browse/REC-38
http://jira-projects.iti.gr:8080/browse/REC-39
http://jira-projects.iti.gr:8080/browse/REC-40
http://jira-projects.iti.gr:8080/browse/REC-43
http://jira-projects.iti.gr:8080/browse/REC-46

The RECLAIM architecture specification (M10)

116

Fit Criterion: Tool development. Potentially already existing process
formalisms might be useful.

Description: The process modelling is a functionality provided by the LCA tool
where users need to specify information like process input and
output (like materials, parts and components) and process
characteristics (like the involved machine).
The modelled processes represent part of the input for the logics
of the sustainability assessment.

[REC-39] Machine modelling

Issue Links: Relates

relates to REC-40 Impacts computation

relates to REC-41 Integration of the digital twin data

relates to REC-43 LCA scenarios comparison

relates to REC-46 LCA service providing

relates to REC-38 Process modelling

Requirement
Type:

Functional

Reporter: SUPSI

Implementation
Assignee:

SUPSI

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard, Machine Operational Profiling

Status: part of specification

Rationale: The LCA tool has to support the modelling of different machines
middle of life scenarios.

Source: MANU-SQUARE (H2020 project)

http://jira-projects.iti.gr:8080/browse/REC-39
http://jira-projects.iti.gr:8080/browse/REC-40
http://jira-projects.iti.gr:8080/browse/REC-41
http://jira-projects.iti.gr:8080/browse/REC-43
http://jira-projects.iti.gr:8080/browse/REC-46
http://jira-projects.iti.gr:8080/browse/REC-38

The RECLAIM architecture specification (M10)

117

Fit Criterion: Tool development. Potentially already existing machine
formalisms might be useful.

Description: The machine modelling is a functionality provided by the LCA
tool where users need need to specify information like the
machine capabilities, potential connected processes, etc.
The modelled machines represent part of the input the process
modelling.

[REC-40] Impacts computation

Issue Links: Relates

relates to REC-43 LCA scenarios comparison

relates to REC-45 Saving of the assessment result

relates to REC-46 LCA service providing

relates to REC-38 Process modelling

relates to REC-39 Machine modelling

Requirement
Type:

Functional

Reporter: SUPSI

Implementation
Assignee:

SUPSI

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard

Status: part of specification

Rationale: The LCA tool has to compute impact data related to defined
machines middle of life scenarios.

Source: MANU-SQUARE (H2020 project), MANUTELLIGENCE (FP7 project)

Fit Criterion: Developers are able to write code/libraries from a development
environment. Developers have basic knowledge on the LCA

http://jira-projects.iti.gr:8080/browse/REC-40
http://jira-projects.iti.gr:8080/browse/REC-43
http://jira-projects.iti.gr:8080/browse/REC-45
http://jira-projects.iti.gr:8080/browse/REC-46
http://jira-projects.iti.gr:8080/browse/REC-38
http://jira-projects.iti.gr:8080/browse/REC-39

The RECLAIM architecture specification (M10)

118

methodology.

[REC-41] Integration of the digital twin data

Issue Links: Relates

relates to REC-43 LCA scenarios comparison

relates to REC-46 LCA service providing

relates to REC-39 Machine modelling

Requirement
Type:

Functional

Reporter: SUPSI

Implementation
Assignee:

SUPSI

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard

Status: part of specification

Rationale: The LCA tool has to connect with the digital twin to feed the
models with middle of life data.

Fit Criterion: Tool development.

Description: The integration of the LCA tool with the digital twin enables the
forecast of the sustainability performances and comparison of the
different scenarios which differ on the lifetime extension
methods.

[REC-42] Retrieving of the predicted data

Issue Links: Relates

http://jira-projects.iti.gr:8080/browse/REC-41
http://jira-projects.iti.gr:8080/browse/REC-43
http://jira-projects.iti.gr:8080/browse/REC-46
http://jira-projects.iti.gr:8080/browse/REC-39
http://jira-projects.iti.gr:8080/browse/REC-42

The RECLAIM architecture specification (M10)

119

relates to REC-46 LCA service providing

Requirement
Type:

Functional

Reporter: SUPSI

Implementation
Assignee:

SUPSI

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard

Status: part of specification

Rationale: LCA tool has to retrieve data from prediction engines to support
impact calculation of forecasting scenarios.

Fit Criterion: Developers are able to write code/libraries from a development
environment.

[REC-43] LCA scenarios comparison

Issue Links: Relates

relates to REC-46 LCA service providing

relates to REC-38 Process modelling

relates to REC-39 Machine modelling

relates to REC-40 Impacts computation

relates to REC-41 Integration of the digital twin data

Requirement
Type:

Functional

Reporter: SUPSI

Implementation SUPSI

http://jira-projects.iti.gr:8080/browse/REC-46
http://jira-projects.iti.gr:8080/browse/REC-43
http://jira-projects.iti.gr:8080/browse/REC-46
http://jira-projects.iti.gr:8080/browse/REC-38
http://jira-projects.iti.gr:8080/browse/REC-39
http://jira-projects.iti.gr:8080/browse/REC-40
http://jira-projects.iti.gr:8080/browse/REC-41

The RECLAIM architecture specification (M10)

120

Assignee:

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard

Status: part of specification

Rationale: The LCA tool has to connect with the digital twin to feed the
models with middle of life data.

Fit Criterion: Tool development.

[REC-45] Saving of the assessment result

Issue Links: Relates

relates to REC-46 LCA service providing

relates to REC-40 Impacts computation

Requirement
Type:

Functional

Reporter: SUPSI

Implementation
Assignee:

SUPSI

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard

Status: part of specification

Rationale: The LCA tool has to visualize assessment results and scenarios
comparisons.
The LCA tool has to be able to save all computed impacts into
the RECLAIM repository.

Fit Criterion: Developers are able to write code/libraries from a development

http://jira-projects.iti.gr:8080/browse/REC-45
http://jira-projects.iti.gr:8080/browse/REC-46
http://jira-projects.iti.gr:8080/browse/REC-40

The RECLAIM architecture specification (M10)

121

environment.

[REC-46] LCA service providing

Issue Links: Relates

relates to REC-38 Process modelling

relates to REC-39 Machine modelling

relates to REC-40 Impacts computation

relates to REC-41 Integration of the digital twin data

relates to REC-42 Retrieving of the predicted data

relates to REC-43 LCA scenarios comparison

relates to REC-45 Saving of the assessment result

Requirement
Type:

Functional

Reporter: SUPSI

Implementation
Assignee:

SUPSI

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

Data handler, Distributed data storage and analytics (DRy), Life
cycle assessment + LCA dashboard

Status: part of specification

Rationale: The execution of the assessment logics (belonging to the LCA
tool) need to be made available through service endpoints.

Fit Criterion: Tool development.

Description: In order to guarantee its integration, the LCA tool needs to
expose a set of web services (for example by means of the REST
paradigm) meant to provide some functionalities to the rest of
the platform.

http://jira-projects.iti.gr:8080/browse/REC-46
http://jira-projects.iti.gr:8080/browse/REC-38
http://jira-projects.iti.gr:8080/browse/REC-39
http://jira-projects.iti.gr:8080/browse/REC-40
http://jira-projects.iti.gr:8080/browse/REC-41
http://jira-projects.iti.gr:8080/browse/REC-42
http://jira-projects.iti.gr:8080/browse/REC-43
http://jira-projects.iti.gr:8080/browse/REC-45

The RECLAIM architecture specification (M10)

122

[REC-47] Cybersecurity monitoring and protection of the deployed embedded
systems and IT infrastructure.

Issue Links: Relates

relates to REC-71 FPGA-accelerated cyber security modul...

relates to REC-81 FPGA-accelerated cyber security devic...

Requirement
Type:

Functional

Reporter: FINT

Implementation
Assignee:

FINT

Quality Check
Assignee:

CERTH

RECLAIM
Component(s):

FPGA-accelerated cyber security module

Status: open

Rationale: The protection of the deployed embedded systems and IT
infrastructure from external and internal cybersecurity threats is
critical for ensuring the uninterrupted and correct operation of
the deployed assets. To achieve this level of protection,
mechanisms providing the monitoring, detection and mitigation
of the threats need to be in place.

Source: RECLAIM Grant Agreement, Security By Design, Best practices in
Cyber security, NIST SP 800-53, ISO 27002 "Code practice for
information security controls"

Fit Criterion: Perform some form of penetration testing (focused on the threats
the detection and analysis modules claims to detect) and verify
that a) the threat is detected; b) the the threat is controlled
(e.g. blocked by the firewall); and c) the event is logged and
reported.
The tests should check the implemented functionalities
(detection, control, reporting) and also some quality aspects like
performance (i.e. speed).

http://jira-projects.iti.gr:8080/browse/REC-47
http://jira-projects.iti.gr:8080/browse/REC-47
http://jira-projects.iti.gr:8080/browse/REC-71
http://jira-projects.iti.gr:8080/browse/REC-81

The RECLAIM architecture specification (M10)

123

Description: Cybersecurity monitoring and protection of the deployed
embedded systems and IT infrastructure.

[REC-48] Shop floor visualization

Requirement
Type:

Functional

Reporter: HWH

Implementation
Assignee:

HWH

Quality Check
Assignee:

FEUP

RECLAIM
Component(s):

AR mechanisms, Users Interfaces

Status: part of specification

Rationale: Relevant maintenance data must be available on shop floor at the
machine's HMI.

Fit Criterion: Dashboards need to be embeddable and presentable fullscreen.

[REC-49] Shop floor visualization (small screen type)

Requirement
Type:

Functional

Reporter: HWH

Implementation
Assignee:

HWH

Quality Check
Assignee:

FEUP

RECLAIM
Component(s):

AR mechanisms, Users Interfaces

Status: part of specification

http://jira-projects.iti.gr:8080/browse/REC-48
http://jira-projects.iti.gr:8080/browse/REC-49

The RECLAIM architecture specification (M10)

124

Rationale: Relevant maintenance data must be available on shop floor in a
compressed format also on mobile devices (panel, smart phone).

Fit Criterion: The dashboard system should be mobile compatible.

[REC-50] Big data analysis

Requirement
Type:

Functional

Reporter: HWH

Implementation
Assignee:

HWH

Quality Check
Assignee:

FEUP

RECLAIM
Component(s):

Adaptive Sensorial Network & Infrastructure for Digital
Retrofitting, Algorithms for quality prediction and process
parameter optimization, Anomaly Detection, Cost Modelling and
Financial Analysis Toolkit, Data handler, Degradation models,
Digital Twin for simulation, Distributed data storage and analytics
(DRy), Fault Diagnosis and Predictive Maintenance Simulation
Engine using Digital Twin, In-Situ Repair Data Analytics,
Integrated Decision Support Framework (DSF) for Refurbishment
& Remanufacturing Optimization, IoT Gateway software stack,
Life cycle assessment + LCA dashboard, Machine Operational
Profiling, Optimization Toolkit for Refurbishment and
Remanufacturing Planning, Predictive Maintenance, Prognostic
and Health Management Toolkit, Reliability Analysis Tool

Status: part of specification

Rationale: Big data analysis shall be done on the basis of existing data sets
and shall be able to be extended in case of new data and new
data types.

Fit Criterion: Well-defined interfaces and data storage in the RECLAIM
architecture and repository.

[REC-51] Big data visualization

http://jira-projects.iti.gr:8080/browse/REC-50
http://jira-projects.iti.gr:8080/browse/REC-51

The RECLAIM architecture specification (M10)

125

Requirement
Type:

Functional

Reporter: HWH

Implementation
Assignee:

HWH

Quality Check
Assignee:

FEUP

RECLAIM
Component(s):

Users Interfaces

Status: part of specification

Rationale: Big data analysis shall be presented on system level, e.g. cloud
infrastructure which is hosted within or outside of a factory
environment.

Fit Criterion: Consistent analysis presentation for all components keeping a
visual project identity.

[REC-52] Machine's degradation state

Requirement
Type:

Functional

Reporter: HWH

Implementation
Assignee:

HWH

Quality Check
Assignee:

FEUP

RECLAIM
Component(s):

Degradation models

Status: part of specification

Rationale: The degradation state of the machine's components and of the
entire machine shall be predicted based on relevant process
information.

http://jira-projects.iti.gr:8080/browse/REC-52

The RECLAIM architecture specification (M10)

126

Source: REBORN project

Fit Criterion: Unit-Test: Different degradation states for worn-out / new
process information.

[REC-53] Ease of usage, simple setup

Requirement
Type:

Non-Functional

Reporter: HWH

Implementation
Assignee:

HWH

Quality Check
Assignee:

FEUP

RECLAIM
Component(s):

Adaptive Sensorial Network & Infrastructure for Digital
Retrofitting, Algorithms for quality prediction and process
parameter optimization, Anomaly Detection, AR mechanisms,
Data handler, Degradation models, Digital Twin for simulation,
Fault Diagnosis and Predictive Maintenance Simulation Engine
using Digital Twin, In-Situ Repair Data Analytics, Life cycle
assessment + LCA dashboard, Machine Operational Profiling,
Predictive Maintenance, Reliability Analysis Tool, Users Interfaces

Status: part of specification

Rationale: The setup of any system within the RECLAIM architecture shall be
as easy as possible. Training, expert knowledge, etc. shall not be
required for setting up a component. Any system and any
component shall be able for self-learning e.g. by using AI e.g. in
order to identify setup parameters, to distinguish between
regular and malfunction operations.

Fit Criterion: Questionnaire/evaluation with pilots and non-technical partners.

[REC-54] Economic infrastructure

Requirement
Type:

Non-Functional

http://jira-projects.iti.gr:8080/browse/REC-53
http://jira-projects.iti.gr:8080/browse/REC-54

The RECLAIM architecture specification (M10)

127

Reporter: HWH

Implementation
Assignee:

HWH

Quality Check
Assignee:

FEUP

RECLAIM
Component(s):

Adaptive Sensorial Network & Infrastructure for Digital
Retrofitting, FPGA-accelerated cyber security module

Status: part of specification

Rationale: Additional hardware such as sensors or actuators are often costly
in purchasing and maintaining. Furthermore, they are often
difficult to attach to machines and are additional potential
failure sources. As a consequence, additional hardware shall be
used only if there are no other options for delivering a required
output.

Fit Criterion: An attempt to reuse computing and sensing equipment already
present was made.

[REC-55] Evaluation of production system performances in terms of
throughput, assets utilization, etc.

Requirement
Type:

Functional

Reporter: TTS

Implementation
Assignee:

TTS

Quality Check
Assignee:

LINKS

RECLAIM
Component(s):

Digital Twin for simulation

Status: part of specification

Rationale: The Digital twin simulates the shop floor and provides KPI to
evaluate the performances of a production system considering
different production and maintenance scenarios.

http://jira-projects.iti.gr:8080/browse/REC-55
http://jira-projects.iti.gr:8080/browse/REC-55

The RECLAIM architecture specification (M10)

128

Annex 2: Hardware components list

A2.1 Machine Vision System

Table 26 - Filled-in hardware specifications template for the Machine Vision System

Issue Links: Relates

relates to REC-82 Machine Vision Toolkit (T3.1, FINT)

Description and Functionality

Name: Machine Vision System

Measurement: The part ID identified or NONE if unknown, the alignment status
of the part (true: correctly aligned/false: incorrectly aligned

Functionality: Production line enhancement and predictive maintenance

Physical Characteristics

Length (mm): 200

Width (mm): 200

Height (mm): 100

Weight (kg): 2

Material: aluminium, plastic, stainless steel

Mounting: wall mount, pole mount, custom

Operational Characteristics

Measurement
Range:

frame size: 50x50cm, frame rate: 1 - 5fps

Measurement
Resolution:

TBA

Accuracy: TBA

http://jira-projects.iti.gr:8080/browse/REC-82

The RECLAIM architecture specification (M10)

129

Zero Error: TBA

Temperature: +5°C to +45°C

Humidity: 20% - 80%

Lifetime: 5 years

Hardware Requirements

Power
Requirements:

230V AC, 25W

Data
Connections:

Ethernet, WiFi

Data Format: NGSI, jpg file

Data Rate: every 200msec minimum, dependable on production line speed

Data
Availability:

continuous, on demand

Software Requirements

Software
Required:

Yes

Software
Details:

Machine Vision software stack based on ML (OpenCV, Tensorflow,
Keras etc.)

A2.2 IoT Gateway with AI acceleration

Table 27 - Filled-in hardware specifications template for the IoT Gateway with AI acceleration

Issue Links: Relates

relates to REC-72 IoT Gateway software stack (T3.1, FIN...

relates to REC-79 ASN Sensor Protocol Adaptation (T3.1,...

relates to REC-80 ASN Actuator Protocol Adaptation (T3....

Description and Functionality

http://jira-projects.iti.gr:8080/browse/REC-72
http://jira-projects.iti.gr:8080/browse/REC-79
http://jira-projects.iti.gr:8080/browse/REC-80

The RECLAIM architecture specification (M10)

130

Name: IoT Gateway

Functionality: Operates as a border router for wireless sensors, caches and
processes sensor data using ML algorithms when needed, optional
machine vision camera interface

Physical Characteristics

Length (mm): 200

Width (mm): 200

Height (mm): 100

Weight (kg): 1.5

Material: aluminium

Mounting: wall mount, pole mount

Operational Characteristics

Temperature: -10°C to +50°C

Humidity: 10% - 90%

Lifetime: 10 years

Hardware Requirements

Power
Requirements:

230V AC, 20W

Data
Connections:

Ethernet, WiFi, LoRa (optional), 6LoWPAN, MODBUS

Data Format: NGSI

Data Rate: limited by underlying communication protocol only

Data
Availability:

continuous, periodic, on demand

Software Requirements

Software Yes

The RECLAIM architecture specification (M10)

131

Required:

Software
Details:

WSN session services and brokers, caching services (database), ML
software stack

A2.3 LINKS FPGA platform

Table 28 - Filled-in hardware specifications template for the LINKS FPGA platform

Description and Functionality

Name: LINKS Gateway

Short
description:

Flexible platform to be adapted to specific requirments

Functionality: Edge Industrial gateway: flexible gateway that can connect
different machines, sensors, cameras, etc., and hosts different
type of algorithms using an ARM+FPGA or ARM+GPU approach. AI
algorithms can be optimized to work on FPGA/GPU to be faster
and consume less power

Software requirements

Software
required:

No

Software
details:

The software will depend on the requirements and will be based
on open-source projects and/or on SW directly developed by
LINKS. FPGA accelerators will be based on open source libraries or
on IP cores freely available from FPGA vendor.

LINKS is a research center and does not have a product but can customize the
board to fulfill the requirements of the application.

This is true for both HW and SW including the support for external sensors and the
handling of different types of data transport protocols (currently at least MQTT,
AMQP and Websocket are supported).

The RECLAIM architecture specification (M10)

132

A2.4 FPGA-accelerated cyber security device

Table 29 - Filled-in hardware specifications template for the FPGA-accelerated cyber security device

Issue Links: Relates

relates to REC-47 Cybersecurity monitoring and protecti...

Description and Functionality

Name: Cyber security GW

Functionality: Monitors and analyses network traffic destined to or stemming
from the assets for detecting threats and anomalous patterns;
Blocks the network connections that are evaluated as threats; logs
related security events (e.g. to be use later from an auditing
mechanism); Provides acceleration to the sophisticated cyber
threat detection and analysis algorithms.

Physical Characteristics

Material: aluminium, plastic, stainless steel

Mounting: Rack mount

Operational Characteristics

Temperature: 0°C to 70°C

Hardware Requirements

Power
Requirements:

220V AC

Data
Connections:

Ethernet, USB, Serial

Data Rate: Max 1Gbps (Ethernet)

Software Requirements

Software
Required:

Yes

Software
Details:

The SW modules are needed for implementing a) the management
modules of the Cyber security GW; b) the cyber threat detection
and analysis modules; c) the threat mitigation/control modules

http://jira-projects.iti.gr:8080/browse/REC-47

The RECLAIM architecture specification (M10)

133

that will block the threats; and d) the communication/interfacing
modules that will enable for the interaction with other external
components (e.g. central logging server, software agents, etc.).

A2.5 Friction Welding Machine

Table 30 - Filled-in hardware specifications template for the Friction Welding Machine

Description and Functionality

Name: Friction Welding Machine

Measurement: several process data (distance, speed, air pressure/forces, times),
average load

Digital/Analog
Signals:

digital distance measurement,
digital io nio output
analog pressure, speed input/output

Functionality: manual friction welding machine

Physical Characteristics

Length (mm): 2,000

Width (mm): 1,200

Height (mm): 2,200

Weight (kg): 2,000

Material: aluminium, plastic, stainless steel, copper

Mounting: free standing on floor with feet

Operational Characteristics

Measurement
Range:

approx. 500 Hz measurement frequency

Measurement
Resolution:

2ms

Accuracy: TBA

The RECLAIM architecture specification (M10)

134

Zero Error: TBA

Temperature: +5°C to +45°C

Humidity: 20% - 80%

Lifetime: 10 years

Hardware Requirements

Power
Requirements:

380V 32A AC, 12kW

Data
Connections:

Ethernet

Data Format: raw data

Data Rate: every 2msec minimum, dependable on production line speed

Data
Availability:

continuous

Software Requirements

Software
Required:

Yes

Software
Details:

Machine operating system based on FreeBSD for
monitoring/communication and embedded software stack for
control.

Annex 3: Individual data models

The data models corresponding to data transferred through the RECLAIM Repository
follow in JSON format. By these data models the holistic data model, which is the
common information model presented in Section 3.1.9 Common information model, has
been derived. In this version of the deliverable, not all data models could be
specified, so only the available ones were considered.

The RECLAIM architecture specification (M10)

135

A3.1 Data from/to the Adaptive Sensorial

Network

The data transferred from the ASN to the Data Handler are produced by the Sensor
Protocol Adaptation and the Machine Vision Toolkit subcomponents of the ASN.

A3.1.1 ASN Sensor

[

 {

 "id": "a4cc9834-f4dc-44b4-83d2-2d06f8ed6def",

 "type": "Machine",

 "TimeInstant": {

 "type": "DateTime",

 "value": "2020-06-19T12:06:08.00Z"

 },

 "owner": {

 "type": "Text",

 "value": "OWNER"

 },

 "transducers": {

 "type": "Array",

 "value": [

 "046c48c2-4d23-416d-9efe-64344e19faba",

]

 }

 },

 {

The RECLAIM architecture specification (M10)

136

 "id": "046c48c2-4d23-416d-9efe-64344e19faba",

 "type": "GenericSensor",

 "TimeInstant": {

 "type": "DateTime",

 "value": "2020-06-19T12:06:08.00Z"

 },

 "name": {

 "type": "Text",

 "value": "My Sensor 22"

 },

 "position": {

 "type": "Text",

 "value": "POSITION"

 },

 "units": {

 "type": "Text",

 "value": "UNITS"

 },

 "value": {

 "type": "Text",

 "value": "VALUE"

 }

 }

]

A3.1.2 ASN Actuator

The idea for the ASN Actuator is to receive data from the RECLAIM Repository
instead of sending data to it. Despite this, it was considered that the corresponding

The RECLAIM architecture specification (M10)

137

individual data model should also be compatible with the CIM. During the 2nd phase
of T2.3 it will be examined if there will be appropriate devices for data
communication to the ASN Actuator.

[

 {

 "id": "a4cc9834-f4dc-44b4-83d2-2d06f8ed6def",

 "type": "Machine",

 "TimeInstant": {

 "type": "DateTime",

 "value": "2020-06-19T12:06:08.00Z"

 },

 "owner": {

 "type": "Text",

 "value": "OWNER"

 },

 "transducers": {

 "type": "Array",

 "value": [

 "d270715e-1c22-4e74-97fe-e6dbf0e3f840"

]

 }

 },

 {

 "id": "d270715e-1c22-4e74-97fe-e6dbf0e3f840",

 "type": "GenericActuator",

 "TimeInstant": {

 "type": "DateTime",

 "value": "2020-06-19T12:06:08.00Z"

The RECLAIM architecture specification (M10)

138

 },

 "name": {

 "type": "Text",

 "value": "My Actuator 123"

 },

 "position": {

 "type": "Text",

 "value": "POSITION"

 },

 "units": {

 "type": "Text",

 "value": "UNITS"

 },

 "value": {

 "type": "Text",

 "value": "VALUE"

 }

 }

]

A3.1.3 Machine Vision System

[

 {

 "id": "a4cc9834-f4dc-44b4-83d2-2d06f8ed6def",

 "type": "Machine",

 "TimeInstant": {

 "type": "DateTime",

The RECLAIM architecture specification (M10)

139

 "value": "2020-06-19T12:06:08.00Z"

 },

 "owner": {

 "type": "Text",

 "value": "OWNER"

 },

 "transducers": {

 "type": "Array",

 "value": [

 "5877bcdc-e0f9-4187-a65b-aa8b5c80e0b0"

]

 }

 },

 {

 "id": "5877bcdc-e0f9-4187-a65b-aa8b5c80e0b0",

 "type": "VisionSensor",

 "TimeInstant": {

 "type": "DateTime",

 "value": "2020-06-19T12:06:08.00Z"

 },

 "name": {

 "type": "Text",

 "value": "My Vision Sensor 2"

 },

 "position": {

 "type": "Text",

 "value": "POSITION"

 },

The RECLAIM architecture specification (M10)

140

 "requestedPart": {

 "type": "Text",

 "value": "PART_ID"

 },

 "identifiedPart": {

 "type": "Text",

 "value": "PART_ID"

 },

 "partMatch": {

 "type": "Boolean",

 "value": true

 },

 "partAligned": {

 "type": "Boolean",

 "value": false

 }

 },

]

A3.2 Data from the Reliability Analysis Tool

{

 "systemName": <str>,

 "systemId": <int>,

 "workingHours": <float>,

 "currentReliability": <float>,

 "meanTimeBetweenFailures": <float>,

 "analysisExecutionTimestamp" : <ISO/UNIX timestamp>,

The RECLAIM architecture specification (M10)

141

 "components": [

 {

 "componentName": <str>,

 "repairable": <boolean>,

 "componentId": <int>,

 "meanFailureTime" : <float>,

 "stdDeviation" : <float>,

 "currentReliability": <float>,

 }

 {

 "componentName": <str>,

 "repairable": <boolean>,

 "componentId": <int>,

 "meanFailureTime" : <float>,

 "stdDeviation" : <float>,

 "currentReliability": <float>,

 }

 {

 "..." : "..."

 }

]

}

A3.3 Data from the Machinery Operational

Profiling

{

The RECLAIM architecture specification (M10)

142

 "TimeStamp": <ISO timestamp>,

 "Machine": {

 "MachineID": <str>,

 "Owner": <str>,

 "KPIs": [

 {"Kpi": {

 "@name": <str>,

 "@units": <str - measurement unit>,

 "#text": <str - number>

 }},…

],

 "Index": {

 "Health": {

 "@timestamp": <ISO timestamp>,

 "#text": <str - number>

 },

 "Performance": {

 "@timestamp": <ISO timestamp>,

 "#text": <str - number>

 },

 "Production": {

 "@timestamp": <ISO timestamp>,

 "#text": <str - number>

 }

 }

 }

}

The RECLAIM architecture specification (M10)

143

A3.4 Data from the Optimization Toolkit for

Refurbishment and Remanufacturing Planning

{

 "output_name":

"FCY.OptimizationToolkit."+<pilot_name>+"."+<use_case_name>,

 "present_time": <ISO/UNIX timestamp>,

 "machine": <str>,

 "kpi_values": {

 "perfomance_"+<individual_kpi_1>: <float>,...

 "perfomance_"+<individual_kpi_n>: <float>,

 "operation_"+<individual_kpi_1>: <float>,...

 "operation_"+<individual_kpi_n>: <float>,

 "production_"+<individual_kpi_1>: <float>,...

 "production_"+<individual_kpi_n>: <float>,

 "process_"+<individual_kpi_1>: <float>,...

 "process_"+<individual_kpi_n>: <float>

 },

 "operation": {

 "component": <str>,

 "sensor": <str>,

 "machine_process": <str>,

 "suggested_operation": <str>,

 "optimal_time_to_perfom_action": <ISO/UNIX timestamp>,

 },

 "generated_plan": [

 {

 "component": <str>,

The RECLAIM architecture specification (M10)

144

 "sensor": <str>,

 "machine_process": <str>,

 "suggested_action": <str>,

 "optimal_time_to_perfom_action": <ISO/UNIX timestamp>,

 },

 {

 "component": <str>,

 "sensor": <str>,

 "machine_process": <str>,

 "suggested_action": <str>,

 "optimal_time_to_perfom_action": <ISO/UNIX timestamp>,

 },

 ...,

],

 "machine_calibration_suggestions": [

 {

 "component": <str>,

 "sensor": <str>,

 "machine_process": <str>,

 "parameter_value_expected_1": <float>, ...,

 "parameter_value_expected_n": <float>, ...,

 },...,

 {

 "component": <str>,

 "sensor": <str>,

 "machine_process": <str>,

 "parameter_value_expected_1": <float>, ...,

 "parameter_value_expected_n": <float>, ...,

The RECLAIM architecture specification (M10)

145

 }

],

 "message": <str - This is free text notifying the end users

about relevant information>,

 "arguments": {

 "toolkit_configuration": {

 "kpis_weights":

 {

 "kpi_1": <float>,...

 "kpi_n": <float>

 }

 },

"adaptive_sensorial_network_and_infrastructure_digital_retrofi

tting": <dict>,

 "machinery_operational_profiling": <dict>,

"fault_diagnosis_predictive_maintenance_simulation_digital_twi

n": <dict>}

}

A3.5 Data from the Prognostic and Health

Management Toolkit

A3.5.1 Description of machine part

// MachinePartItem

{

 "machinePartId": {

The RECLAIM architecture specification (M10)

146

 "type": "uuid"

 "description": "identifier of a machine part"

 },

 "componentId": {

 "type": "uuid"

 "description": "identifier of a hardware component"

 },

 "WeibullWeight": {

 "type": "float",

 "min": "0.0",

 "max": "100.0",

 "default": "1.0",

 "description": "weight of reliability value of the

component in the referenced machine part"

 }

}

// MachinePart, combines machine-part-items to a whole chain

{

 "machinePartId": {

 "type": "uuid"

 "description": "identifier of a machine part"

 },

 "machinePartItems": {

 "type": "array",

 "minLength": "1",

 "maxLength": "infinite"

 "description": "list of MachinePartItems objects"

 }

The RECLAIM architecture specification (M10)

147

}

A3.5.2 Description of machine component

// Hardware Component

// Static information of a single hardware component necessary

for degradation calculation

// which should be store in RECLAIM Repository

{

 "componentId": {

 "type": "uuid",

 "description": "identifier of the component,

 },

 "Model": {

 "type": "string",

 "default": "Model_XYZ",

 "description": "model identfier",

 "required": true

 },

 "SerialNumber": {

 "type": "string",

 "default": "12345678",

 "description": "serial number",

 },

 "InstallationTime": {

 "type": "datetime",

 "default": "",

 "description": "time of installation of the machine part

(start of usage)",

The RECLAIM architecture specification (M10)

148

 },

 "LastServiceTime": {

 "type": "datetime",

 "default": "",

 "description": "time of last maintenance",

 },

 "DescriptionModel": {

 "type": "string",

 "default": "Weibull",

 "description": "type of degradation model to use",

 },

 "TimeUnit": {

 "type": "string",

 "default": "Second",

 "description": "time resolution of load and degradation

calculation",

 },

 "WeibullBeta": {

 "type": "float",

 "min": "0.1",

 "max": "50",

 "default": 3.0,

 "description": "Weibull beta parameter. Miminal and

maximal values are extreme values where beta still could make

sense."

 },

 "WeibullEta" : {

 "type": "uint32"

 "min": "0",

The RECLAIM architecture specification (M10)

149

 "max": "1e9",

 "default": "1e9"

 "description": "Weibull eta parameter in seconds.",

 },

}

A3.5.3 Sensor/process data

// Sensor/process data

// This can be any data from process which can be referenced

// by table/column combination from RECLAIM Repository

// to a specific load calculator service

{

 "componentId": {

 "type": "uuid",

 "description": "Identifier of a machine part",

 },

 "...": {

 "type": "float|float[]",

 "min": "FLT_MIN",

 "max": "FLT_MAX",

 "default": "0.0",

 "description": "a sensor or processdata column which is

necessary for load calulcation",

 },

}

The RECLAIM architecture specification (M10)

150

A3.5.4 Load data

// Load Caclulation Result

{

 "componentId": {

 "type": "uuid",

 "description": "Identifier of a machine part",

 "required": true,

 },

 "AverageLoad": {

 "type": "float",

 "min": "0.0",

 "max": "1000000.0",

 "default": "1.0",

 "description": "Equipment load can vary in a broad range.

Maximal value is here limited by 1e6."

 }

 "EstimateTime": {

 "type": "uint32",

 "min": "0",

 "max": "4294967295",

 "default": "0",

 "description": "Calculated life time of the component in

TimeUnit of component",

 }

}

A3.5.5 Degradation data

// Degradation Model Result

The RECLAIM architecture specification (M10)

151

{

 "machinePartId": {

 "type": "uuid"

 "description": "identifier of a machine part "

 },

 "MTTF" : {

 "type": "uint32"

 "min": "0",

 "max": "1e9",

 "default": "1e9"

 "description": "mean time to failure in seconds. Maximum

value of 1 billion corresponds to about 30 years.",

 },

 "SigmaMTTF" : {

 "type": "uint32"

 "min": "0",

 "max": "1e9",

 "default": "1e9"

 "description": "Square root of second moment (standard

deviation) of time to failure (TTF) distribution. Maximum

value of 1 billion corresponds to about 30 years.",

 },

 "MTBF" : {

 "type": "uint32"

 "min": "0",

 "max": "1e9",

 "default": "1e9"

 "description": "mean time between failures in seconds.

Maximum value of 1 billion corresponds to about 30 years.",

The RECLAIM architecture specification (M10)

152

 },

 "MRL": {

 "type": "uint32",

 "min": "0",

 "max": "1e9",

 "default": "1e9"

 "description": "mean residual life of used component in

seconds. Maximum value of 1 billion corresponds to about 30

years."

 },

 "Hazard": {

 "type": "uint32",

 "min": "0",

 "max": "1e9",

 "default": "0"

 "description": "hazard function in ppb/second (part per

billion in second). It is probability to fail within next time

unit (e.g. second). Maximum value of 1 billion corresponds to

failure probability of 100% 1 in second."

 },

 "ReliableLife": {

 "type": "uint32",

 "min": "0",

 "max": "1e9",

 "default": 1e9,

 "description": "Lifetime for survival probability of 90%

in seconds. Maximum value of 1 billion corresponds to about 30

years."

 },

 "Wear": {

 "type": "uint32",

The RECLAIM architecture specification (M10)

153

 "min": "0",

 "max": "1e9",

 "default": 0,

 "description": "Wear of equipment. Maximum value of 1

billion (1e9) corresponds to 100. Wear percentage is obtained

by following factor: x1e-7"

 },

}

A3.6 Data from the Integrated Decision Support

Framework for Refurbishment &

Remanufacturing Optimization core component

{"output_name":

"CERTH.DSFCore."+<pilot_name>+"."+<use_case_name>,

 "present_time": <ISO/UNIX timestamp>,

 "kpi_values": {"with_optimization_"+<individual_kpi_1>:

<float>,

 "with_optimization_"+<individual_kpi_2>:

<float>,...

 "with_optimization_"+<individual_kpi_n>:

<float>,

 "with_optimization_total": <float>,

 "without_optimization_"+<individual_kpi_1>:

<float>,

 "without_optimization_"+<individual_kpi_2>:

<float>,...

 "without_optimization_"+<individual_kpi_n>:

<float>,

 "without_optimization_total": <float>},

 "decisions": [{"machine": <str>,

The RECLAIM architecture specification (M10)

154

 "component": <str>,

 "action": <str>,

 "optimal_continuous_variables":

{"parameter_name": <float>,

"parameter_name": <float>,...},

 "start_time": <ISO/UNIX timestamp>,

 "end_time": <ISO/UNIX timestamp>,

 "design_strategy",<str>},

 {"machine": <str>,

 "component": <str>,

 "action": <str>,

 "optimal_continuous_variables":

{"parameter_name": <float>,

"parameter_name": <float>,...},

 "start_time": <ISO/UNIX timestamp>,

 "end_time": <ISO/UNIX timestamp>,

 "design_strategy",<str>},...],

 "message": <str -

 This is free text notifying the end users about

the

 a) most suitable remanufacturing/refurbishment

strategies,

 b) preferable timeframe for implementation of

the strategies,

 c) right components to be

remanufactured/refurbished,

 d) optimal design alternatives.>,

 "arguments": {"dsfcore": {"optimization_horizon_years":

<float>,

 "kpis_weights": {"kpi_1": <float>,

The RECLAIM architecture specification (M10)

155

 "kpi_2":

<float>,...

 "kpi_n": <float>}

"number_of_optimization_iterations": <int>,

 },

 "machinery_operational_profiling": <dict>,

 "fault_disgnosis_predictive_maintenance":

<dict>,

"optimization_toolkit_refurbishment_remanufacturing_planning":

<dict>,

 "prognostic_health_management": <dict>,

 "cost_modelling_financial_analysis_toolkit":

<dict>}}

